Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Data Brief ; 46: 108817, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36578533

ABSTRACT

In this study, the cooling rate-dependent properties of polyphenylene sulfide (PPS) and carbon fiber reinforced PPS (CF/PPS) manufactured at different cooling rates (1, 5, and 10 °C/min) are presented. The cooling rate-dependent densities of neat PPS and CF/PPS were determined based on the Archimedes' principle. The coefficients of thermal expansion (CTEs) were determined using a thermomechanical analyzer. The stress-strain curves of neat PPS manufactured at different cooling rates under tensile, compressive, and shear loading were obtained using a universal tester. In addition, the R curves of CF/PPS and the corresponding load-displacement curves are presented under mode I and mode II loading. The experimental data provide useful information for the development of numerical models that depend on both cooling rates and stress triaxiality. In addition, the data can be directly utilized to evaluate the properties and quality of carbon fiber reinforced thermoplastic components in the aerospace, automobile, energy, and civil engineering industries. Detailed experimental results have been presented in a previous study [1].

2.
Data Brief ; 43: 108462, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35864875

ABSTRACT

Various foreign objects can collide with CFRP structures, such as CFRP aircraft. Once something impacts with CFRP laminates, both surface damage and internal damage can occur. Even if the external damage is such invisible as called barely visible impact damage, there are matrix cracks or delamination that are the main cause of compressive strength reduction, so it is difficult to find the relationship between external and internal damage on CFRP laminates. This dataset is prepared for predicting impact information only from surface damage profiles using Machine Learning (Hasebe et al., 2022). It includes three data, surface damage image (png), surface depth contour image(png), and internal damage image after ultrasound C-scanning (jpg) after low-velocity impact testing under various impact conditions. The data are helpful for researchers and engineers who deal with the impact behavior of CFRP or data science.

SELECTION OF CITATIONS
SEARCH DETAIL
...