Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Water Clim Chang ; 12(5): 1404-1419, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-36644765

ABSTRACT

Stream water temperature imposes metabolic constraints on the health of cold-water fish like salmonids. Timber harvesting can reduce stream shading leading to higher water temperatures, while also altering stream hydrology. In the Pacific Northwest, riparian buffer requirements are designed to mitigate these impacts; however, anticipated future changes in air temperature and precipitation could reduce the efficacy of these practices in protecting aquatic ecosystems. Using a combined modeling approach (Soil and Water Assessment Tool (SWAT), Shade, and QUAL2K), this study examines the effectiveness of riparian buffers in reducing impacts of timber harvest on stream water temperature in Lookout Creek, Oregon across a range of potential future climates. Simulations assess changes in riparian management alone, climate alone, and combined effects. Results suggest that maximum stream water temperatures during thermal stress events are projected to increase by 3.3-7.4 °C due to hydroclimatic change alone by the end of this century. Riparian management is effective in reducing stream temperature increases from timber harvesting alone but cannot fully counteract the additional effects of a warming climate. Overall, our findings suggest that the protection of sensitive aquatic species will likely require additional adaptation strategies, such as the protection or provisioning of cool water refugia, to enhance survival during maximum thermal stress events.

2.
J Am Water Resour Assoc ; 55(2): 497-510, 2019 Apr 05.
Article in English | MEDLINE | ID: mdl-32704230

ABSTRACT

A total maximum daily load for the Chesapeake Bay requires reduction in pollutant load from sources within the Bay watersheds. The Conestoga River watershed has been identified as a major source of sediment load to the Bay. Upland loads of sediment from agriculture are a concern; however, a large proportion of the sediment load in the Conestoga River has been linked to scour of legacy sediment associated with historic millpond sites. Clarifying this distinction and identifying specific segments associated with upland vs. channel sources has important implications for future management. In order to address this important question, we combined the strengths of two widely accepted watershed management models - Soil and Water Assessment Tool (SWAT) for upland agricultural processes, and Hydrologic Simulation Program FORTRAN (HSPF) for instream fate and transport - to create a novel linked modeling system to predict sediment loading from critical sources in the watershed including upland and channel sources, and to aid in targeted implementation of management practices. The model indicates approximately 66% of the total sediment load is derived from instream sources, in agreement with other studies in the region and can be used to support identification of these channel source segments vs. upland source segments, further improving targeted management. The innovated linked SWAT-HSPF model implemented in this study is useful for other watersheds where both upland agriculture and instream processes are important sources of sediment load.

SELECTION OF CITATIONS
SEARCH DETAIL
...