Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 54(14): 8938-8948, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32551599

ABSTRACT

Environmental contaminants and parasites are ubiquitous stressors that can affect animal physiology and derive from similar dietary sources (co-exposure). To unravel their interactions in wildlife, it is thus essential to quantify their concurring drivers. Here, the relationship between blood contaminant residues (11 trace elements and 17 perfluoroalkyl substances) and nonlethally quantified gastrointestinal parasite loads was tested while accounting for intrinsic (sex, age, and mass) and extrinsic factors (trophic ecology inferred from stable isotope analyses and biologging) in European shags Phalacrocorax aristotelis. Shags had high mercury (range 0.65-3.21 µg g-1 wet weight, ww) and extremely high perfluorooctanoic acid (PFOA) and perfluorononanoic acid (PFNA) residues (3.46-53 and 4.48-44 ng g-1 ww, respectively). Males had higher concentrations of arsenic, mercury, PFOA, and PFNA than females, while the opposite was true for selenium, perfluorododecanoic acid (PFDoA), and perfluooctane sulfonic acid (PFOS). Individual parasite loads (Contracaecum rudolphii) were higher in males than in females. Females targeted pelagic-feeding prey, while males relied on both pelagic- and benthic-feeding organisms. Parasite loads were not related to trophic ecology in either sex, suggesting no substantial dietary co-exposure with contaminants. In females, parasite loads increased strongly with decreasing selenium:mercury molar ratios. Females may be more susceptible to the interactive effects of contaminants and parasites on physiology, with potential fitness consequences.


Subject(s)
Environmental Pollutants , Fluorocarbons , Mercury , Parasites , Selenium , Animals , Birds , Ecology , Female , Fluorocarbons/analysis , Male
2.
Proc Natl Acad Sci U S A ; 113(32): 9039-44, 2016 08 09.
Article in English | MEDLINE | ID: mdl-27457932

ABSTRACT

Ocean surface winds are an essential factor in understanding the physical interactions between the atmosphere and the ocean. Surface winds measured by satellite scatterometers and buoys cover most of the global ocean; however, there are still spatial and temporal gaps and finer-scale variations of wind that may be overlooked, particularly in coastal areas. Here, we show that flight paths of soaring seabirds can be used to estimate fine-scale (every 5 min, ∼5 km) ocean surface winds. Fine-scale global positioning system (GPS) positional data revealed that soaring seabirds flew tortuously and ground speed fluctuated presumably due to tail winds and head winds. Taking advantage of the ground speed difference in relation to flight direction, we reliably estimated wind speed and direction experienced by the birds. These bird-based wind velocities were significantly correlated with wind velocities estimated by satellite-borne scatterometers. Furthermore, extensive travel distances and flight duration of the seabirds enabled a wide range of high-resolution wind observations, especially in coastal areas. Our study suggests that seabirds provide a platform from which to measure ocean surface winds, potentially complementing conventional wind measurements by covering spatial and temporal measurement gaps.


Subject(s)
Birds/physiology , Flight, Animal , Wind , Animals , Geographic Information Systems , Oceans and Seas
3.
Zoolog Sci ; 30(10): 858-67, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24125649

ABSTRACT

To gain a better understanding of molluscan development and its relation to the evolution of their unique body plan, we performed a genomic survey of genes encoding transcription factors, such as Tbx, Fox, Ets, HMG, NFκB, bZIP, and C2H2 zinc finger proteins in the Japanese pearl oyster, Pinctada fucata. We annotated 133 transcription factor genes. Together with the orthologs of known deuterostome genes, we found several orphan genes in each class of transcription factor. Some possessed clear orthologs in other species of lophotrochozoans, while no counterpart genes were found in the deuterostomes or ecdysozoans. These observations suggest that a number of transcription factor genes are unique to lophotrochozoans, and thus additional research frontiers remain to be explored with regard to such transcription factors.


Subject(s)
Genome , Pinctada/genetics , Pinctada/metabolism , Transcription Factors/metabolism , Animals , Gene Expression Regulation/physiology , Phylogeny , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...