Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Osteoarthritis Cartilage ; 31(5): 576-587, 2023 05.
Article in English | MEDLINE | ID: mdl-36528308

ABSTRACT

OBJECTIVE: The Anterior Cruciate Ligament (ACL)-deficient model helps to clarify the mechanism of knee osteoarthritis (OA); however, the conventional ACL injury model could have included concurrent onset factors such as direct compression stress to cartilage and subchondral bone. In this study, we established a novel Non-invasive ACL-Ruptured mouse model without concurrent injuries and elucidated the relationship between OA progression and joint instability. DESIGN: We induced the ACL-Rupture non-invasively in twelve-week-old C57BL/6 male mice and evaluated histological, macroscopical, and morphological analysis at 0 days. Next, we created the ACL-R, controlled abnormal tibial translation (CATT), and Sham groups. Then, the joint stability and OA pathophysiology were analyzed at 2, 4, and 8 weeks. RESULTS: No intra-articular injuries, except for ACL rupture, were observed in the ACL-R model. ACL-R mice increased anterior tibial displacement compared to the Sham group (P < 0.001, 95% CI [-1.509 to -0.966]) and CATT group (P < 0.001, 95% CI [-0.841 to -0.298]) at 8 weeks. All mice in the ACL-R group caused cartilage degeneration. The degree of cartilage degeneration in the ACL-R group was higher than in the CATT group (P = 0.006) at 8 weeks. The MMP-3-positive cell rate of chondrocytes increased in the ACL-R group than CATT group from 4 weeks (P = 0.043; 95% CI [-28.32 to -0.364]) while that of synovial cells increased at 8 weeks (P = 0.031; 95% CI [-23.398 to -1.021]). CONCLUSION: We successfully established a Non-invasive ACL-R model without intra-articular damage. Our model revealed that chondrocytes might react to abnormal mechanical stress prior to synovial cells while the knee OA onset.


Subject(s)
Anterior Cruciate Ligament Injuries , Joint Instability , Osteoarthritis, Knee , Male , Animals , Mice , Mice, Inbred C57BL , Chondrocytes , Anterior Cruciate Ligament , Anterior Cruciate Ligament Injuries/complications , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...