Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Phys Condens Matter ; 36(17)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38270229

ABSTRACT

Long-range interactions derive various strange phenomena. As illustrated by cutoff simulations of water, increasing cutoff length does not improve the simulation result necessarily; on the contrary, it makes the result worse. In the extreme situation, the structure of water transforms into a layer structure. In this study, to explore the underlying mechanism of this phenomenon, we performed Monte Carlo simulations on dipolar spins arranged on a pyrochlore spin-ice lattice. Like the water case, the present dipolar spin system also showed cutoff-induced dipole ordering and layer formation. The width of the layers depended on the cutoff length; and longer cutoff length led to a broader layer. These features are certainly consistent with the previous water case. This indicates that layer formation is the general behavior of dipolar systems whose interactions are truncated within a finite distance. The result is important for future exploration of the relationship between long-range interactions and resulting structures. In addition, it emphasizes the necessity of rigorous treatment of long-range interactions because increasing the cutoff length prevents convergence and provides an entirely different result from the rigorous Ewald calculation.

2.
J Chem Phys ; 154(4): 044103, 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33514106

ABSTRACT

Electrostatic interaction is long ranged; thus, the accurate calculation is not an easy task in molecular dynamics or Monte Carlo simulations. Though the rigorous Ewald method based on the reciprocal space has been established, real-space treatments have recently become an attractive alternative because of the efficient calculation. However, the construction is not yet completed and is now a challenging subject. In an earlier theoretical study, Neumann and Steinhauser employed the Onsager dielectric continuum model to explain how simple real-space cutoff produces artificial dipolar orientation. In the present study, we employ this continuum model to explore the fundamental properties of the recently developed real-space treatments of three shifting schemes. The result of the distance-dependent Kirkwood function GK(R) showed that the simple bare cutoff produces a well-known hole-shaped artifact, whereas the shift treatments do not. Two-dimensional mapping of electric field well explained how these shift treatments remove the hole-shaped artifact. Still, the shift treatments are not sufficient because they do not produce a flat GK(R) profile unlike ideal no-cutoff treatment. To test the continuum model results, we also performed Monte Carlo simulations of dipolar particles. The results found that the continuum model could predict the qualitative tendency as to whether each electrostatic treatment produces the hole-shaped artifact of GK(R) or not. We expect that the present study using the continuum model offers a stringent criterion to judge whether the primitive electrostatic behavior is correctly described or not, which will be useful for future construction of electrostatic treatments.

3.
J Chem Phys ; 149(17): 175102, 2018 Nov 07.
Article in English | MEDLINE | ID: mdl-30408972

ABSTRACT

Although water is undoubtedly an essential mediator of protein-ligand interactions, whether or not such water molecules are critical for the progress of ligand dissociation remains unclear. To gain a more complete understanding, molecular dynamics simulations are performed with two molecular systems, rigid model binding sites and trypsin-benzamidine. Free-energy landscapes are calculated with a suitably chosen solvent coordinate, which well describes water access to the ligand binding site. The results of free energy provided clear description of water-ligand exchange process, where two different mechanisms appear depending on whether the binding site is buried or not. As the site is more buried, water access is more difficult. When water does not access the site, ligand dissociation produces a large energy barrier, i.e., slow dissociation kinetics. This indicates that control of ligand dissociation kinetics becomes possible with burying the binding site. However, the results also showed that appropriate burying is important because burying reduces not only water access but also ligand binding. The role of the protein structural change is also discussed; it likely plays a similar role to water access because during ligand dissociation, it can make new coordination with the ligand binding site like water. These results contribute to the future pharmaceutical drug design and will be useful for fundamental exploration of various molecular events.


Subject(s)
Proteins/chemistry , Water/chemistry , Benzamidines/chemistry , Binding Sites , Ligands , Molecular Dynamics Simulation , Protein Binding , Thermodynamics , Trypsin/chemistry
4.
J Comput Chem ; 39(23): 1835-1842, 2018 Sep 05.
Article in English | MEDLINE | ID: mdl-29676475

ABSTRACT

We performed reaction path search calculations for the NaCl·(H2 O)6 cluster using the global reaction route mapping (GRRM) code to understand the atomic-level mechanisms of the NaCl → Na+ + Cl- ionic dissociation induced by water solvents. Low-lying minima, transition states connecting two local minima and corresponding intrinsic reaction coordinates on the potential energy surface are explored. We found that the NaCl distances at the transitions states for the dissociation pathways were distributed in a relatively wide range of 2.7-3.7 Å and that the NaCl distance at the transition state did not correlate with the commonly used solvation coordinates. This suggests that the definition of the transition states with specific structures as well as good reaction coordinate is very difficult for the ionic dissociation process even in a small water cluster. © 2018 Wiley Periodicals, Inc.

5.
J Chem Phys ; 143(4): 044506, 2015 Jul 28.
Article in English | MEDLINE | ID: mdl-26233144

ABSTRACT

Different ion pairs exhibit different dissociation kinetics; however, while the nature of this process is vital for understanding various molecular systems, the underlying mechanism remains unclear. In this study, to examine the origin of different kinetic rate constants for this process, molecular dynamics simulations were conducted for LiCl, NaCl, KCl, and CsCl in water. The results showed substantial differences in dissociation rate constant, following the trend kLiCl < kNaCl < kKCl < kCsCl. Analysis of the free-energy landscape with a solvent reaction coordinate and subsequent rate component analysis showed that the differences in these rate constants arose predominantly from the variation in solvent-state distribution between the ion pairs. The formation of a water-bridging configuration, in which the water molecule binds to an anion and a cation simultaneously, was identified as a key step in this process: water-bridge formation lowers the related dissociation free-energy barrier, thereby increasing the probability of ion-pair dissociation. Consequently, a higher probability of water-bridge formation leads to a higher ion-pair dissociation rate.

6.
J Phys Chem B ; 117(25): 7535-45, 2013 Jun 27.
Article in English | MEDLINE | ID: mdl-23713479

ABSTRACT

DNA-binding proteins recognize DNA sequences with at least two different binding modes: specific and nonspecific. Experimental structures of such complexes provide us a static view of the bindings. However, it is difficult to reveal further mechanisms of their target-site search and recognition only from static information because the transition process between the bound and unbound states is not clarified by static information. What is the difference between specific and nonspecific bindings? Here we performed adaptive biasing force molecular dynamics simulations with the specific and nonspecific structures of DNA-Lac repressor complexes to investigate the dissociation process. The resultant free-energy profiles showed that the specific complex has a sharp, deep well consistent with tight binding, whereas the nonspecific complex has a broad, shallow well consistent with loose binding. The difference in the well depth, ~5 kcal/mol, was in fair agreement with the experimentally obtained value and was found to mainly come from the protein conformational difference, particularly in the C-terminal tail. Also, the free-energy profiles were found to be correlated with changes in the number of protein-DNA contacts and that of surface water molecules. The derived protein spatial distributions around the DNA indicate that any large dissociation occurs rarely, regardless of the specific and nonspecific sites. Comparison of the free-energy barrier for sliding [~8.7 kcal/mol; Furini J. Phys. Chem. B 2010, 114, 2238] and that for dissociation (at least ~16 kcal/mol) calculated in this study suggests that sliding is much preferred to dissociation.


Subject(s)
DNA/metabolism , Lac Repressors/metabolism , DNA/chemistry , Lac Repressors/chemistry , Molecular Dynamics Simulation , Protein Binding , Thermodynamics , Water/chemistry
7.
Biophys Chem ; 160(1): 54-61, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22001060

ABSTRACT

The lifetime during which a water molecule resides at the surface of a biomolecule varies according to the hydration site. What determines this variety of lifetimes? Despite many previous studies, there is still no uniform picture quantitatively explaining this phenomenon. Here we calculate the lifetime for a particular hydration pattern in the DNA minor groove, the water bridge, for various DNA sequences to show that the water-bridge lifetime varies from 1 to ~300ps in a sequence-dependent manner. We find that it follows 1/k(V(step))P(m), where P(m) and V(step) are two crucial factors, namely the probability of forming a specific hydrogen bond in which more than one donor atom participates, and the structural fluctuation of DNA, respectively. This relationship provides a picture of the water kinetics with atomistic detail and shows that water dissociation occurs when a particular hydrogen-bonding pattern appears. The rate constant of water dissociation k can be described as a function of the structural fluctuations of DNA. This picture is consistent with the model of Laage and Hynes proposing that hydrogen-bond switching occurs when an unusual number of hydrogen bonds are formed. The two new factors suggested here are discussed in the context of the surface's geometry and electrostatic nature, which were previously proposed as the determinants of water lifetimes.


Subject(s)
DNA/chemistry , Molecular Dynamics Simulation , Water/chemistry , Base Sequence , DNA/genetics , Kinetics
8.
J Struct Biol ; 173(1): 20-8, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20888916

ABSTRACT

MutT distinguishes substrate 8-oxo-dGTP from dGTP and also 8-oxo-dGMP from dGMP despite small differences of chemical structures between them. In this paper we show by the method of molecular dynamics simulation that the transition between conformational substates of MutT is a key mechanism for a high-resolution molecular recognition of the differences between the very similar chemical compounds. (1) The native state MutT has two conformational substates with similar free energies, each characterized by either open or closed of two loops surrounding the substrate binding active site. Between the two substates, the open substate is more stable in free MutT and in dGMP-MutT complex, and the closed substate is more stable in 8-oxo-dGMP-MutT complex. (2) Conformational fluctuation of the open substate is much larger than that of the closed substate. An estimate of associated entropy difference was found to be consistent with the experimentally found difference of entropy contribution to the binding free energies of the two molecules. (3) A hydrogen bond between H7 atom of 8-oxo-dGMP and the sidechain of Asn119 plays a crucial role for maintaining the closed substate in 8-oxo-dGMP-MutT complex. When this hydrogen bond is absent in the H7-deficient dGMP-MutT complex, the closed substate is no more maintained and transition to the more entropically-favored open substate is induced. (4) Thus, this mechanism of the hydrogen bond controlling the relative stabilities of the drastically different two conformational substates enhances the resolution to recognize the small difference of the chemical structures between the two molecules, dGMP and 8-oxo-dGMP.


Subject(s)
Deoxyguanine Nucleotides/metabolism , Escherichia coli Proteins/metabolism , Guanosine Monophosphate/analogs & derivatives , Ligands , Models, Molecular , Protein Binding , Protein Conformation , Pyrophosphatases/metabolism , Entropy , Guanosine Monophosphate/metabolism , Hydrogen Bonding , Molecular Dynamics Simulation , Molecular Structure
9.
Biophys J ; 98(12): 2974-83, 2010 Jun 16.
Article in English | MEDLINE | ID: mdl-20550910

ABSTRACT

Are protein nonpolar cavities filled with water molecules? Although many experimental and theoretical investigations have been done, particularly for the nonpolar cavity of IL-1 beta, the results are still conflicting. To study this problem from the thermodynamic point of view, we calculated hydration free energies of four protein nonpolar cavities by means of the molecular dynamics thermodynamic integration method. In addition to the IL-1 beta cavity (69 A(3)), we selected the three largest nonpolar cavities of AvrPphB (81 A(3)), Trp repressor (87 A(3)), and hemoglobin (108 A(3)) from the structural database, in view of the simulation result from another study that showed larger nonpolar cavities are more likely to be hydrated. The calculations were performed with flexible and rigid protein models. The calculated free energy changes were all positive; hydration of the nonpolar cavities was energetically unfavorable for all four cases. Because hydration of smaller cavities should happen more rarely, we conclude that existing protein nonpolar cavities are not likely to be hydrated. Although a possibility remains for much larger nonpolar cavities, such cases are not found experimentally. We present a hypothesis to explain this: hydrated nonpolar cavities are quite unstable and the conformation could not be maintained.


Subject(s)
Molecular Dynamics Simulation , Proteins/chemistry , Water/chemistry , Anisotropy , Hydrogen Bonding , Movement , Protein Conformation , Proteins/metabolism , Thermodynamics
10.
Biophys J ; 97(4): 1138-47, 2009 Aug 19.
Article in English | MEDLINE | ID: mdl-19686662

ABSTRACT

DNA deformability and hydration are both sequence-dependent and are essential in specific DNA sequence recognition by proteins. However, the relationship between the two is not well understood. Here, systematic molecular dynamics simulations of 136 DNA sequences that differ from each other in their central tetramer revealed that sequence dependence of hydration is clearly correlated with that of deformability. We show that this correlation can be illustrated by four typical cases. Most rigid basepair steps are highly likely to form an ordered hydration pattern composed of one water molecule forming a bridge between the bases of distinct strands, but a few exceptions favor another ordered hydration composed of two water molecules forming such a bridge. Steps with medium deformability can display both of these hydration patterns with frequent transition. Highly flexible steps do not have any stable hydration pattern. A detailed picture of this correlation demonstrates that motions of hydration water molecules and DNA bases are tightly coupled with each other at the atomic level. These results contribute to our understanding of the entropic contribution from water molecules in protein or drug binding and could be applied for the purpose of predicting binding sites.


Subject(s)
DNA/chemistry , DNA/ultrastructure , Models, Chemical , Models, Molecular , Sequence Analysis, DNA/methods , Water/chemistry , Base Sequence , Computer Simulation , Molecular Sequence Data , Nucleic Acid Conformation
11.
J Chem Phys ; 128(18): 185102, 2008 May 14.
Article in English | MEDLINE | ID: mdl-18532849

ABSTRACT

Because proteins and DNA interact with each other and with various small molecules in the presence of water molecules, we cannot ignore their hydration when discussing their structural and energetic properties. Although high-resolution crystal structure analyses have given us a view of tightly bound water molecules on their surface, the structural data are still insufficient to capture the detailed configurations of water molecules around the surface of these biomolecules. Thanks to the invention of various computational algorithms, computer simulations can now provide an atomic view of hydration. Here, we describe the apparent patterns of DNA hydration calculated by using two different computational methods: Molecular dynamics (MD) simulation and three-dimensional reference interaction site model (3D-RISM) theory. Both methods are promising for obtaining hydration properties, but until now there have been no thorough comparisons of the calculated three-dimensional distributions of hydrating water. This rigorous comparison showed that MD and 3D-RISM provide essentially similar hydration patterns when there is sufficient sampling time for MD and a sufficient number of conformations to describe molecular flexibility for 3D-RISM. This suggests that these two computational methods can be used to complement one another when evaluating the reliability of the calculated hydration patterns.


Subject(s)
Algorithms , Computer Simulation , DNA/chemistry , Water/chemistry , Crystallography, X-Ray , Models, Biological , Molecular Conformation , Oxygen/chemistry , Solvents/chemistry , Thermodynamics
12.
J Chem Phys ; 124(20): 204501, 2006 May 28.
Article in English | MEDLINE | ID: mdl-16774347

ABSTRACT

Cutoff treatment is the simplest approach for evaluating intermolecular interactions in molecular dynamics simulations. It has been believed that increasing cutoff length makes simulation results better. On the contrary, our results of the bulk water simulations studied within the range of cutoff lengths, 9-18 A, showed an opposite tendency: the artifact was enhanced by increasing the cutoff length. Especially, in terms of the distance dependent Kirkwood factor GK(r), it was clearly shown that the orientational behavior of water molecules becomes gradually worse as the cutoff length becomes longer. The artifact enhanced by the increased cutoff length led to a reported spurious artifact, i.e., phase transition [Y. Yonetani, Chem. Phys. Lett. 406, 49 (2005)]. Though the cutoff artifact was largely reduced by adopting a force switching technique, it did not completely remove the anomalous cutoff length dependence of the artifact. These results suggest that increasing the cutoff should not be attempted regardless of whether the switching force is adopted or not.


Subject(s)
Chemistry, Physical/methods , Water/chemistry , Computer Simulation , Electrochemistry , Hydrogen Bonding , Models, Chemical , Models, Molecular , Models, Statistical , Models, Theoretical , Molecular Conformation , Solvents , Static Electricity , Thermodynamics , Time Factors
13.
J Chem Phys ; 120(22): 10624-33, 2004 Jun 08.
Article in English | MEDLINE | ID: mdl-15268088

ABSTRACT

Fundamental transport properties of liquid para-hydrogen (p-H(2)), i.e., diffusion coefficients, thermal conductivity, shear viscosity, and bulk viscosity, have been evaluated by means of the path integral centroid molecular dynamics (CMD) calculations. These transport properties have been obtained over the wide temperature range, 14-32 K. Calculated values of the diffusion coefficients and the shear viscosity are in good agreement with the experimental values at all the investigated temperatures. Although a relatively large deviation is found for the thermal conductivity, the calculated values are less than three times the amount of the experimental values at any temperature. On the other hand, the classical molecular dynamics has led all the transport properties to much larger deviation. For the bulk viscosity of liquid p-H(2), which was never known from experiments, the present CMD has given a clear temperature dependence. In addition, from the comparison based on the principle of corresponding states, it has been shown that the marked deviation of the transport properties of liquid p-H(2) from the feature which is expected from the molecular parameters is due to the quantum effect.

SELECTION OF CITATIONS
SEARCH DETAIL
...