Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Biomater Sci Polym Ed ; 35(8): 1258-1272, 2024 06.
Article in English | MEDLINE | ID: mdl-38457333

ABSTRACT

Recently, we applied solution 2H-nuclear magnetic resonance spectroscopy (2H NMR) to analyze the water (deuterium oxide, D2O) structure in several biopolymers at ambient temperature. We established that polymers with good blood compatibility (i.e. poly(2-methoxyethyl acrylate) (PMEA)) have water observed at high magnetic fields (upfield) compared with bulk water. Polymers containing poly(propylene glycol) (PPG) or poly(propylene oxide) (PPO) exhibit good compatibility; however, the reason for this remains unclear. In addition, reports on the blood compatibility of PPO/PPG are limited. Therefore, PPG diester (PPGest) was prepared as a model polymer, and its blood compatibility and water structure were investigated. PPGest exhibited excellent blood compatibility. The water in PPGest was observed upfield by 2H NMR, and it was defined as non-freezing water via differential scanning calorimetry. Based on these observations, the relationship between the blood compatibility and water structure of PPGest is discussed by comparing with those of PMEA, and the reason for the good performance of PPG/PPO-based polymers is discussed.


Subject(s)
Calorimetry, Differential Scanning , Magnetic Resonance Spectroscopy , Propylene Glycols , Water , Propylene Glycols/chemistry , Water/chemistry , Humans , Biocompatible Materials/chemistry , Materials Testing , Polymers/chemistry , Animals
SELECTION OF CITATIONS
SEARCH DETAIL