Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 17(2)2016 Jan 29.
Article in English | MEDLINE | ID: mdl-26840299

ABSTRACT

Monocyte chemoattractant protein (MCP)-1 increases in the serum of immunocompetent patients with community-acquired pneumonia (CAP). However, the correlation between the circulating level of MCP-1 and severity of CAP remains unclear. This study investigated differential changes in the plasma MCP-1 levels of patients with CAP before and after an antibiotic treatment and further analyzes the association between the CAP severity and MCP-1 levels. We measured the plasma MCP-1 levels of 137 patients with CAP and 74 healthy controls by using a commercial enzyme-linked immunosorbent assay. Upon initial hospitalization, Acute Physiology and Chronic Health Evaluation II (APACHE II); confusion, urea level, respiratory rate, blood pressure, and age of >64 years (CURB-65); and pneumonia severity index (PSI) scores were determined for assessing the CAP severity in these patients. The antibiotic treatment reduced the number of white blood cells (WBCs) and neutrophils as well as the level of C-reactive protein (CRP) and MCP-1. The plasma MCP-1 level, but not the CRP level or WBC count, correlated with the CAP severity according to the PSI (r = 0.509, p < 0.001), CURB-65 (r = 0.468, p < 0.001), and APACHE II (r = 0.360, p < 0.001) scores. We concluded that MCP-1 levels act in the development of CAP and are involved in the severity of CAP.


Subject(s)
Chemokine CCL2/blood , Community-Acquired Infections/blood , Pneumonia/blood , Adult , Aged , Biomarkers/blood , C-Reactive Protein/metabolism , Case-Control Studies , Community-Acquired Infections/pathology , Female , Humans , Male , Middle Aged , Pneumonia/pathology
2.
Int J Nanomedicine ; 9: 3069-76, 2014.
Article in English | MEDLINE | ID: mdl-25061289

ABSTRACT

The aims of this study were to investigate the most effective combination of physical forces from laser, electroporation, and reverse iontophoresis for noninvasive transdermal extraction of uric acid, and to develop a highly sensitive uric acid biosensor (UAB) for quantifying the uric acid extracted. It is believed that the combination of these physical forces has additional benefits for extraction of molecules other than uric acid from human skin. A diffusion cell with porcine skin was used to investigate the most effective combination of these physical forces. UABs coated with ZnO2 nanoparticles and constructed in an array configuration were developed in this study. The results showed that a combination of laser (0.7 W), electroporation (100 V/cm(2)), and reverse iontophoresis (0.5 mA/cm(2)) was the most effective and significantly enhanced transdermal extraction of uric acid. A custom-designed UAB coated with ZnO2 nanoparticles and constructed in a 1×3 array configuration (UAB-1×3-ZnO2) demonstrated enough sensitivity (9.4 µA/mM) for quantifying uric acid extracted by the combined physical forces of laser, electroporation, and RI. A good linear relationship (R(2)=0.894) was demonstrated to exist between the concentration of uric acid (0.2-0.8 mM) inside the diffusion cell and the current response of the UAB-1×3-ZnO2. In conclusion, a new approach to noninvasive transdermal extraction and quantification of uric acid has been established.


Subject(s)
Blood Chemical Analysis/methods , Electroporation/methods , Iontophoresis/methods , Uric Acid/blood , Animals , Blood Chemical Analysis/instrumentation , Electroporation/instrumentation , Iontophoresis/instrumentation , Models, Biological , Skin , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...