Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 172
Filter
1.
Poult Sci ; 103(10): 104068, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39096825

ABSTRACT

Avian influenza virus (AIV) subtype H9N2 has significantly threatened the poultry business in recent years by having become the predominant subtype in flocks of chickens, ducks, and pigeons. In addition, the public health aspects of H9N2 AIV pose a significant threat to humans. Early and rapid diagnosis of H9N2 AIV is therefore of great importance. In this study, a new method for the detection of H9N2 AIV based on fluorescence intensity was successfully established using CRISPR/Cas13a technology. The Cas13a protein was first expressed in a prokaryotic system and purified using nickel ion affinity chromatography, resulting in a high-purity Cas13a protein. The best RPA (recombinase polymerase amplification) primer pairs and crRNA were designed and screened, successfully constructing the detection of H9N2 AIV based on CRISPR/Cas13a technology. Optimal concentration of Cas13a and crRNA was determined to optimize the constructed assay. The sensitivity of the optimized detection system is excellent, with a minimum detection limit of 10° copies/µL and didn't react with other avian susceptible viruses, with excellent specificity. The detection method provides the basis for the field detection of the H9N2 AIV.


Subject(s)
CRISPR-Cas Systems , Chickens , Gene Editing , Influenza A Virus, H9N2 Subtype , Influenza in Birds , Poultry Diseases , Influenza A Virus, H9N2 Subtype/genetics , Influenza A Virus, H9N2 Subtype/isolation & purification , Influenza in Birds/virology , Influenza in Birds/diagnosis , Animals , Gene Editing/methods , Gene Editing/veterinary , Poultry Diseases/virology , Poultry Diseases/diagnosis , Ducks
2.
J Immunol ; 213(7): 1008-1022, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39194407

ABSTRACT

The functions of the natural dsRNA sensors TLR3 (TRIF) and RIG-I (MAVS) are crucial during viral challenge and have not been accurately clarified in adaptive immune responses to rotavirus (RV) infection. In this study, we found that RV infection caused severe pathological damage to the small intestine of TLR3-/- and TRIF-/- mice. Our data found that dendritic cells from TLR3-/- and TRIF-/- mice had impaired Ag presentation to the RV and attenuated initiation of T cells upon viral infection. These attenuated functions resulted in impaired CD4+ T and CD8+ T function in mice lacking TLR3-TRIF signaling postinfection. Additionally, attenuated proliferative capacity of T cells from TLR3-/- and TRIF-/- mice was observed. Subsequently, we observed a significant reduction in the absolute number of memory T cells in the spleen and mesenteric lymph node (MLN) of TRIF-/- recipient mice following RV infection in a bone marrow chimeric model. Furthermore, there was reduced migration of type 2 classical dendritic cells from the intestine to MLNs after RV infection in TLR3-/- and TRIF-/- mice. Notably, RV infection resulted in attenuated killing of spleen and MLN tissues in TRIF-/- and MAVS-/- mice. Finally, we demonstrated that RV infection promoted apoptosis of CD8+ T cells in TRIF-/- and TLR3-/-MAVS-/- mice. Taken together, our findings highlight an important mechanism of TLR3 signaling through TRIF in mucosal T cell responses to RV and lay the foundation for the development of a novel vaccine.


Subject(s)
Adaptor Proteins, Signal Transducing , Adaptor Proteins, Vesicular Transport , Dendritic Cells , Mice, Knockout , Rotavirus Infections , Rotavirus , Signal Transduction , Toll-Like Receptor 3 , Animals , Toll-Like Receptor 3/immunology , Mice , Rotavirus Infections/immunology , Signal Transduction/immunology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/immunology , Rotavirus/immunology , Dendritic Cells/immunology , Mice, Inbred C57BL , Intestinal Mucosa/immunology , CD8-Positive T-Lymphocytes/immunology , Immunity, Mucosal , Antigen Presentation/immunology
3.
Phys Chem Chem Phys ; 26(20): 14691-14704, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38716569

ABSTRACT

The properties and applications of ionic liquids (ILs) have been widely investigated when they are confined within nanochannels such as carbon nanotubes (CNTs). The confined ILs exhibit very different properties from their bulk state due to a nanoconfinement effect, which plays an important role in the performances of devices with ILs. In this work, we studied the effect of the charge carried by CNTs on confined ILs inside CNTs using molecular dynamics simulations. In charged CNTs, cations and anions are distributed separately along the radial directions, and the transition of orientations of the cations between parallel and vertical to CNTs occurs by changing the charge state of CNTs. The number of hydrogen bonds (HBs) formed by the confined ILs can be reduced by switching the surface charge of CNTs from positive to negative due to the contact modes between cations and anions as well as the distributions of cations in CNTs. The diffusivities along and vertical to the axial direction of CNTs were found to be non-monotonic owing to the "trade-off" effect from both ion pair interlocking and anchoring ILs on the CNT walls. Additionally, the region-dependent dynamics of ILs were also related to the intermolecular interactions in different regions of CNTs. Furthermore, the vibrational modes of ILs were obviously influenced in highly charged CNTs as determined by calculating the density of vibrational states, which demonstrated the transitions in the structure and interactions. The density distributions changed from single layer to double layers when increasing the pore size of neutral CNTs while the hydrogen bonds exhibited a non-monotonic tendency versus the pore sizes. Our results might help to understand the structure and dynamics of confined ILs as well as aid optimizing the performance of devices with ILs.

4.
Nat Commun ; 15(1): 4009, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740761

ABSTRACT

Frequency combs, specialized laser sources emitting multiple equidistant frequency lines, have revolutionized science and technology with unprecedented precision and versatility. Recently, integrated frequency combs are emerging as scalable solutions for on-chip photonics. Here, we demonstrate a fully integrated superconducting microcomb that is easy to manufacture, simple to operate, and consumes ultra-low power. Our turnkey apparatus comprises a basic nonlinear superconducting device, a Josephson junction, directly coupled to a superconducting microstrip resonator. We showcase coherent comb generation through self-started mode-locking. Therefore, comb emission is initiated solely by activating a DC bias source, with power consumption as low as tens of picowatts. The resulting comb spectrum resides in the microwave domain and spans multiple octaves. The linewidths of all comb lines can be narrowed down to 1 Hz through a unique coherent injection-locking technique. Our work represents a critical step towards fully integrated microwave photonics and offers the potential for integrated quantum processors.

5.
Nano Lett ; 24(18): 5453-5459, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38682680

ABSTRACT

Voltage-controlled oscillators, serving as fundamental components in semiconductor chips, find extensive applications in diverse modules such as phase-locked loops, clock generators, and frequency synthesizers within high-frequency integrated circuits. This study marks the first implementation of superconducting Josephson probe microscopy for near-field microwave detection on multiple voltage-controlled oscillators. Focusing on spectrum tracking, various phenomena, such as stray spectra and frequency drifts, were found under nonsteady operating states. Parasitic electromagnetic fields, originating from power supply lines and frequency divider circuits, were identified as sources of interference between units. The investigation further determined optimal working states by analyzing features of the microwave distributions. Our research not only provides insights into the optimization of circuit design and performance enhancement in oscillators but also emphasizes the significance of nondestructive near-field microwave microscopy as a pivotal tool in characterizing integrated millimeter-wave chips.

6.
Inorg Chem ; 63(15): 6767-6775, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38569160

ABSTRACT

Electrolytic hydrogen production via water splitting holds significant promise for the future of the energy revolution. The design of efficient and abundant catalysts, coupled with a comprehensive understanding of the hydrogen evolution reaction (HER) mechanism, is of paramount importance. In this study, we propose a strategy to craft an atomically precise cluster catalyst with superior HER performance by cocoupling a Mo2O4 structural unit and a Cu(I) alkynyl cluster into a structured framework. The resulting bimetallic cluster, Mo2Cu17, encapsulates a distinctive structure [Mo2O4Cu17(TC4A)4(PhC≡C)6], comprising a binuclear Mo2O4 subunit and a {Cu17(TC4A)2(PhC≡C)6} cluster, both shielded by thiacalix[4]arene (TC4A) and phenylacetylene (PhC≡CH). Expanding our exploration, we synthesized two homoleptic CuI alkynyl clusters coprotected by the TC4A and PhC≡C- ligands: Cu13 and Cu22. Remarkably, Mo2Cu17 demonstrates superior HER efficiency compared to its counterparts, achieving a current density of 10 mA cm-2 in alkaline solution with an overpotential as low as 120 mV, significantly outperforming Cu13 (178 mV) and Cu22 (214 mV) nanoclusters. DFT calculations illuminate the catalytic mechanism and indicate that the intrinsically higher activity of Mo2Cu17 may be attributed to the synergistic Mo2O4-Cu(I) coupling.

7.
Nat Nanotechnol ; 19(8): 1101-1107, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38684808

ABSTRACT

Ferrotoroidicity-the fourth form of primary ferroic order-breaks both space and time-inversion symmetry. So far, direct observation of ferrotoroidicity in natural materials remains elusive, which impedes the exploration of ferrotoroidic phase transitions. Here we overcome the limitations of natural materials using an artificial nanomagnet system that can be characterized at the constituent level and at different effective temperatures. We design a nanomagnet array as to realize a direct-kagome spin ice. This artificial spin ice exhibits robust toroidal moments and a quasi-degenerate ground state with two distinct low-temperature toroidal phases: ferrotoroidicity and paratoroidicity. Using magnetic force microscopy and Monte Carlo simulation, we demonstrate a phase transition between ferrotoroidicity and paratoroidicity, along with a cross-over to a non-toroidal paramagnetic phase. Our quasi-degenerate artificial spin ice in a direct-kagome structure provides a model system for the investigation of magnetic states and phase transitions that are inaccessible in natural materials.

8.
Nano Lett ; 24(14): 4108-4116, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38536003

ABSTRACT

Symmetry breaking plays a pivotal role in unlocking intriguing properties and functionalities in material systems. For example, the breaking of spatial and temporal symmetries leads to a fascinating phenomenon: the superconducting diode effect. However, generating and precisely controlling the superconducting diode effect pose significant challenges. Here, we take a novel route with the deliberate manipulation of magnetic charge potentials to realize unconventional superconducting flux-quantum diode effects. We achieve this through suitably tailored nanoengineered arrays of nanobar magnets on top of a superconducting thin film. We demonstrate the vital roles of inversion antisymmetry and its breaking in evoking unconventional superconducting effects, namely a magnetically symmetric diode effect and an odd-parity magnetotransport effect. These effects are nonvolatilely controllable through in situ magnetization switching of the nanobar magnets. Our findings promote the use of antisymmetry (breaking) for initiating unconventional superconducting properties, paving the way for exciting prospects and innovative functionalities in superconducting electronics.

9.
Int Immunopharmacol ; 130: 111710, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38394888

ABSTRACT

Influenza virus is a kind of virus that poses several hazards of animal and human health. Therefore, it is important to develop an effective vaccine to prevent influenza. To this end we successfully packaged recombinant adenovirus rAd-NP-M2e-GFP expressing multiple copies of influenza virus conserved antigens NP and M2e and packaged empty vector adenovirus rAd-GFP. The effect of rAd-NP-M2e-GFP on the activation of dendritic cell (DC) in vitro and in vivo was detected by intranasal immunization. The results showed that rAd-NP-M2e-GFP promoted the activation of DC in vitro and in vivo. After the primary immunization and booster immunization of mice through the nasal immune way, the results showed that rAd-NP-M2e-GFP induced enhanced local mucosal-specific T cell responses, increased the content of SIgA in broncho alveolar lavage fluids (BALF) and triggered the differentiation of B cells in the germinal center. It is proved that rAd-NP-M2e-GFP can significantly elicit mucosal immunity and systemic immune response. In addition, rAd-NP-M2e-GFP could effectively protect mice after H1N1 influenza virus challenge. To lay the foundation and provide reference for further development of influenza virus mucosal vaccine in the future.


Subject(s)
Adenovirus Vaccines , Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Orthomyxoviridae Infections , Animals , Mice , Humans , Adenoviridae/genetics , Immunization , Vaccines, Synthetic , Immunity, Mucosal , Mice, Inbred BALB C , Antibodies, Viral
10.
Se Pu ; 41(10): 835-842, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-37875406

ABSTRACT

Capillary electrochromatography (CEC) has received increased attention from the academic community because it combines the excellent selectivity of high performance liquid chromatography (HPLC) and the high efficiency of capillary electrophoresis (CE). Selecting the most appropriate stationary phase material is crucial to achieve better separation effects in CEC. In recent years, a considerable number of materials, such as graphene oxide, proteins, metal organic frameworks, and covalent organic frameworks (COFs), have been widely used as stationary phases in CEC to further improve its separation performance and extend its scope of potential applications. Among these materials, COFs have shown great application prospects in CEC owing to their unique properties, which include high porosity, large surface area, excellent stability, tunable pore size, and high designability of the framework structure. This review systematically summarizes published papers on the development and application of COFs in CEC from 2016 to 2023. First, two COF-based capillary columns (i. e., open-tube CEC columns and monolithic CEC columns) and their preparation methods are introduced. Second, the applications of CEC based on COF stationary phases in the separation of environmental endocrine disruptors, pesticides, aromatic compounds, amino acids, and drugs, particularly chiral drugs, are systematically summarized. The separation mechanism of CEC based on COF stationary phases is also introduced. At present, the good separation ability of COF-based CEC is mainly attributed to two factors: 1) The size exclusion effect of the pores of the COF stationary phase. Because of differences in the sizes of their organic molecular building units and side chains, COFs have varying pore sizes and topological structures. Thus, target analytes smaller than the pores of the COFs can enter the frameworks and interact with them during separation. On the other hand, target analytes larger than the pores of the COFs cannot enter the frameworks and interact with them during separation; thus, they can be separated. 2) The interactions between the target analytes and side chains (e. g., hydrophobic interactions, hydrogen bonding, π-π interactions, etc.) of the COFs. Since COFs usually contain alkyl side chains, aromatic structures, and oxygen and/or nitrogen atoms with high electronegativity, various interactions could occur between the COFs and target analytes. Finally, directions for the future development and strategic application of CEC based on COF stationary phases are proposed. We believe that future research in CEC based on COF stationary phases should focus on the following aspects: 1) The use of cheminformatics to design and construct COFs to improve the efficiency of COF capillary column preparation; 2) the development of milder methods to synthesize COFs that can meet the requirements of high performance COF capillary columns; and 3) in-depth research to explore the separation mechanism of CEC based on COF stationary phases to provide theoretical guidance for developing CEC methods suitable for the separation and analysis of complex samples.

11.
Chem Commun (Camb) ; 59(70): 10516-10519, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37555647

ABSTRACT

A 30% (w/w) [ImCl][EDA]-based deep eutectic solvent (DES) in water has demonstrated superior gravimetric CO2 uptake with desirable kinetics, lower regeneration enthalpy, and lesser degradation than the industrially popular 30% monoethanolamine (MEA) solution.

13.
Appl Microbiol Biotechnol ; 107(13): 4217-4232, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37209161

ABSTRACT

Starch and cellulose are the fundamental components of tobacco, while their excessive content will affect the quality of tobacco. Enzymatic treatment with different enzymes is a promising method to modulate the chemical composition and improve the sensory quality of tobacco leaves. In this study, enzymatic treatments, such as amylase, cellulase, and their mixed enzymes, were used to improve tobacco quality, which could alter the content of total sugar, reducing sugar, starch, and cellulose in tobacco leaves. The amylase treatment changed surface structure of tobacco leaves, increased the content of neophytadiene in tobacco by 16.48%, and improved the total smoking score of heat-not-burn (HnB) cigarette products by 5.0 points compared with the control. The Bacillus, Rubrobacter, Brevundimonas, Methylobacterium, Stenotrophomonas, Acinetobacter, Pseudosagedia-chlorotica, and Sclerophora-peronella were found to be significant biomarkers in the fermentation process by LEfSe analysis. The Basidiomycota and Agaricomycetes were significantly correlated with aroma and flavor, taste, and total score of HnB. The results showed that microbial community succession occurred due to amylase treatment, which promoted the formation of aroma compounds, and regulated the chemical composition of tobacco, and improved tobacco quality during tobacco fermentation. This study provides a method for enzymatic treatment to upgrade the quality of tobacco raw materials, thereby improving the quality of HnB cigarettes, and the potential mechanism is also revealed by chemical composition and microbial community analysis. KEY POINTS: Enzymatic treatment can change the chemical composition of tobacco leaves. The microbial community was significantly affected by enzymatic treatment. The quality of HnB cigarettes was significantly improved by amylase treatment.


Subject(s)
Electronic Nicotine Delivery Systems , Tobacco Products , Tobacco Products/analysis , Fermentation , Hot Temperature
14.
ACS Nano ; 17(6): 5871-5879, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36926859

ABSTRACT

Tremendous efforts have been devoted to exploiting synthetic wet adhesives for real-life applications. However, developing low-cost, robust, and multifunctional wet adhesive materials remains a considerable challenge. Herein, a wet adhesive composed of a single-component poly(ionic liquid) (PIL) that enables fast and robust underwater adhesion is reported. The PIL adhesive film possesses excellent stretchability and flexibility, enabling its anchoring on target substrates regardless of deformation and water scouring. Surface force measurements show the PIL can achieve a maximum adhesion of 56.7 mN·m-1 on diverse substrates (both hydrophilic and hydrophobic substrates) in aqueous media, within ∼30 s after being applied. The adhesion mechanisms of the PIL were revealed via the force measurements, and its robust wet adhesive capacity was ascribed to the synergy of different non-covalent interactions, such as of hydrogen bonding, cation-π, electrostatic, and van der Waals interactions. Surprisingly, this PIL adhesive film exhibited impressive underwater sound absorption capacity. The absorption coefficient of a 0.7 mm-thick PIL film to 4-30 kHz sound waves could be as high as 0.80-0.92. This work reports a multifunctional PIL wet adhesive that has promising applications in many areas and provides deep insights into interfacial interaction mechanisms underlying the wet adhesion capability of PILs.

16.
J Colloid Interface Sci ; 637: 408-420, 2023 May.
Article in English | MEDLINE | ID: mdl-36716665

ABSTRACT

Herein, we report a straightforward, scalable synthetic route towards poly(ionic liquid) (PIL) homopolymer nanovesicles (NVs) with a tunable particle size of 50 to 120 nm and a shell thickness of 15 to 60 nm via one-step free radical polymerization induced self-assembly. By increasing monomer concentration for polymerization, their nanoscopic morphology can evolve from hollow NVs to dense spheres, and finally to directional worms, in which a multilamellar packing of PIL chains occurred in all samples. The transformation mechanism of NVs' internal morphology is studied in detail by coarse-grained simulations, revealing a correlation between the PIL chain length and the shell thickness of NVs. To explore their potential applications, PIL NVs with varied shell thickness are in situ functionalized with ultra-small (1 âˆ¼ 3 nm in size) copper nanoparticles (CuNPs) and employed as electrocatalysts for CO2 electroreduction. The composite electrocatalysts exhibit a 2.5-fold enhancement in selectivity towards C1 products (e.g., CH4), compared to the pristine CuNPs. This enhancement is attributed to the strong electronic interactions between the CuNPs and the surface functionalities of PIL NVs. This study casts new aspects on using nanostructured PILs as new electrocatalyst supports in CO2 conversion to C1 products.

17.
Nat Commun ; 14(1): 263, 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36650177

ABSTRACT

The role of N-heterocyclic carbene, a well-known reactive site, in chemical catalysis has long been studied. However, its unique binding and electron-donating properties have barely been explored in other research areas, such as metal capture. Herein, we report the design and preparation of a poly(ionic liquid)-derived porous organic polycarbene adsorbent with superior gold-capturing capability. With carbene sites in the porous network as the "nanotrap", it exhibits an ultrahigh gold recovery capacity of 2.09 g/g. In-depth exploration of a complex metal ion environment in an electronic waste-extraction solution indicates that the polycarbene adsorbent possesses a significant gold recovery efficiency of 99.8%. X-ray photoelectron spectroscopy along with nuclear magnetic resonance spectroscopy reveals that the high performance of the polycarbene adsorbent results from the formation of robust metal-carbene bonds plus the ability to reduce nearby gold ions into nanoparticles. Density functional theory calculations indicate that energetically favourable multinuclear Au binding enhances adsorption as clusters. Life cycle assessment and cost analysis indicate that the synthesis of polycarbene adsorbents has potential for application in industrial-scale productions. These results reveal the potential to apply carbene chemistry to materials science and highlight porous organic polycarbene as a promising new material for precious metal recovery.

18.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1009181

ABSTRACT

OBJECTIVE@#To construct and evaluate nomogram prediction model for periprosthetic fractures in patients undergoing total hip arthroplasty (THA).@*METHODS@#A total of 538 patients who underwent THA from April 2013 to February 2019 were selected as the research subjects, including 318 males and 220 females, aged 40 to 60 years old with an average age of (50.79±6.37) years old. All patients with THA were divided into non-fracture group (506 patients) and fracture group (32 pathents) according to the 3-year follow-up results. Univariate and multivariate Logistic regression analyses were performed to analyze the influencing factors of postoperative periprosthetic fractures in patients with THA. A nomogram prediction model for periprosthetic fractures in patients undergoing THA was constructed, and the validity and discrimination of the prediction model were evaluated.@*RESULTS@#The proportion of patients with osteoporosis, trauma history, and hip revision in the fracture group were higher than those in the non-fracture group(P<0.05), and the proportion of bone cement prosthesis was lower than that in the non-fracture group(P<0.05). The osteoporosis status[OR=4.177, 95%CI(1.815, 9.617), P<0.05], trauma history[OR=7.481, 95%CI(3.104, 18.031), P<0.05], and hip revision[OR=11.371, 95%CI(3.220, 40.153, P<0.05] were independent risk factors for postoperative periprosthetic fractures in patients undergoing THA, cemented prosthesis [OR=0.067, 95%CI(0.019, 0.236), P<0.05] was an independent protective factor for postoperative periprosthetic fractures in patients undergoing THA(P<0.05). Hosmer-Lemeshow goodness of fit test showed that χ2=7.864, P=0.325;the area under the curve (AUC) for periprosthetic fractures in patients undergoing THA was 0.892 with a sensitivity of 87.5% and a specificity of 77.7% by receiver operating characteristic(ROC) curve.@*CONCLUSION@#The nomogram prediction model for periprosthetic fractures after THA constructed in this study has good discrimination, which is beneficial to clinical prediction of periprosthetic fractures in patients undergoing THA, and facilitates individualized fracture prevention.


Subject(s)
Male , Female , Humans , Adult , Middle Aged , Arthroplasty, Replacement, Hip/adverse effects , Periprosthetic Fractures/surgery , Nomograms , Reoperation/adverse effects , Risk Factors , Osteoporosis/surgery , Retrospective Studies , Hip Prosthesis
19.
Microb Pathog ; 174: 105924, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36473667

ABSTRACT

Piglet diarrhea caused by the porcine epidemic diarrhea virus (PEDV) is a common problem on pig farms in China associated with high morbidity and mortality rates. In this study, three PEDV isolates were successfully detected after the fourth blind passage in Vero cells. The samples were obtained from infected piglet farms in Jilin (Changchun), and Shandong (Qingdao) Provinces of China and were designated as CH/CC-1/2018, CH/CC-2/2018, and CH/QD/2018. According to the analysis of the complete S protein gene sequence, the CH/CC-1/2018 and CH/CC-2/2018 were allocated to the G2b branch, while CH/QD/2018 was located in the G1a interval and was closer to the vaccine strain CV777. Successful detection and identification of the isolated strains were carried out using electron microscopy and indirect immunofluorescence. Meanwhile, animal challenge experiments and viral RNA copies determination were used to compare the pathogenicity. The results showed that CH/CC-1/2018 in Changchun was more pathogenic than CH/QD/2018 in Qingdao. In conclusion, the discovery of these new strains is conducive to the development of vaccines to prevent the pandemic of PEDV, especially that the CH/CC-1/2018, and CH/CC-2/2018 were not related to the classical vaccine strain CV777.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Chlorocebus aethiops , Animals , Swine , Vero Cells , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Coronavirus Infections/prevention & control , Virulence , Phylogeny , Diarrhea/veterinary , China/epidemiology
20.
Bioresour Bioprocess ; 10(1): 32, 2023 May 02.
Article in English | MEDLINE | ID: mdl-38647749

ABSTRACT

The first-cured tobacco contains macromolecular substances with negative impacts on tobacco products quality, and must be aged and fermented to mitigate their effects on the tobacco products quality. However, the natural fermentation takes a longer cycle with large coverage area and low economic efficiency. Microbial fermentation is a method to improve tobacco quality. The change of chemical composition of tobacco during the fermentation is often correlated with shapes of tobacco. This study aimed to investigate the effects of tobacco microorganisms on the quality of different shapes of tobacco. Specifically, Bacillus subtilis B1 and Cytobacillus oceanisediminis C4 with high protease, amylase, and cellulase were isolated from the first-cured tobacco, followed by using them for solid-state fermentation of tobacco powder (TP) and tobacco leaves (TL). Results showed that strains B1 and C4 could significantly improve the sensory quality of TP, enabling it to outperform TL in overall texture and skeleton of tobacco products during cigarette smoking. Compared with the control, microbial fermentation could increase reducing sugar; regulate protein, starch, and cellulose, reduce nicotine, improve total aroma substances, and enable the surface of fermented TP and TL to be more loose, wrinkled, and porous. Microbial community analysis indicated that strains B1 and C4 could change the native structure of microbial community in TP and TL. LEfSe analysis revealed that the potential key biomarkers in TP and TL were Bacilli, Pseudonocardia, Pantoea, and Jeotgalicoccus, which may have cooperative effects with other microbial taxa in improving tobacco quality. This study provides a theoretical basis for improving tobacco fermentation process for better cigarettes quality.

SELECTION OF CITATIONS
SEARCH DETAIL