Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
SLAS Technol ; 29(3): 100135, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703999

ABSTRACT

Laboratory management automation is essential for achieving interoperability in the domain of experimental research and accelerating scientific discovery. The integration of resources and the sharing of knowledge across organisations enable scientific discoveries to be accelerated by increasing the productivity of laboratories, optimising funding efficiency, and addressing emerging global challenges. This paper presents a novel framework for digitalising and automating the administration of research laboratories through The World Avatar, an all-encompassing dynamic knowledge graph. This Digital Laboratory Framework serves as a flexible tool, enabling users to efficiently leverage data from diverse systems and formats without being confined to a specific software or protocol. Establishing dedicated ontologies and agents and combining them with technologies such as QR codes, RFID tags, and mobile apps, enabled us to develop modular applications that tackle some key challenges related to lab management. Here, we showcase an automated tracking and intervention system for explosive chemicals as well as an easy-to-use mobile application for asset management and information retrieval. Implementing these, we have achieved semantic linking of BIM and BMS data with laboratory inventory and chemical knowledge. Our approach can capture the crucial data points and reduce inventory processing time. All data provenance is recorded following the FAIR principles, ensuring its accessibility and interoperability.


Subject(s)
Automation, Laboratory , Automation, Laboratory/methods , Laboratories , Information Storage and Retrieval/methods
2.
Neurosurgery ; 95(2): 469-479, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38511941

ABSTRACT

BACKGROUND AND OBJECTIVES: Hydrocephalus is characterized by progressive enlargement of cerebral ventricles, resulting in impaired microvasculature and cerebral hypoperfusion. This study aimed to demonstrate the microvascular changes in hydrocephalic rats and the effects of cerebrospinal fluid (CSF) release on cerebral blood flow (CBF). METHODS: On postnatal day 21 (P21), male Wistar rats were intracisternally injected with either a kaolin suspension or saline. On P47, Evan's ratio (ER) was measured using MRI. On P49, the arteriolar diameter and vascular density of the pia were quantified using a capillary video microscope. The CBF was measured using laser Doppler flowmetry. The expressions of NeuN and glial fibrillary acidic protein determined by immunochemical staining were correlated with the ER. The CBF and rotarod test performance were recorded before and after CSF release. The expressions of 4-hydroxynonenal (4-HNE) and c-caspase-3 were studied on P56. RESULTS: Ventriculomegaly was induced to varying degrees, resulting in the stretching and abnormal narrowing of pial arterioles, which regressed with increasing ER. Quantitative analysis revealed significant decreases in the arteriolar diameter and vascular density in the hydrocephalic group compared with those in the control group. In addition, the CBF in the hydrocephalic group decreased to 30%-50% of that in the control group. In hydrocephalus, the neurons appear distorted, and the expression of 4-HNE and reactive astrogliosis increase in the cortex. After CSF was released, improvements in the CBF and rotarod test performance were inversely associated with the ER. In addition, the levels of 4-HNE and c-caspase-3 were further elevated. CONCLUSION: Rapid ventricular dilatation is associated with severe microvascular distortion, vascular regression, cortical hypoperfusion, and cellular changes that impair the recovery of CBF and motor function after CSF release. Moreover, CSF release may induce reperfusion injury. This pathophysiology should be taken into account when treating hydrocephalus.


Subject(s)
Cerebrovascular Circulation , Hydrocephalus , Microcirculation , Rats, Wistar , Animals , Hydrocephalus/surgery , Hydrocephalus/etiology , Hydrocephalus/cerebrospinal fluid , Male , Rats , Microcirculation/physiology , Cerebrovascular Circulation/physiology , Kaolin , Disease Models, Animal
3.
Neurotherapeutics ; 21(2): e00312, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38177024

ABSTRACT

Impaired cerebral microcirculation after subarachnoid hemorrhage (SAH) has been shown to be related to delayed ischemic neurological deficits (DIND). We previously demonstrated the involvement of the receptor for advanced glycation end products (RAGE) in the pathogenesis of SAH related neuronal death. In the present study, we aimed to investigate the therapeutic effects of a recombinant soluble form of RAGE (sRAGE) on microcirculation impairment following SAH. Intrathecal injection of autologous blood in rats, mixed primary astrocyte and microglia cultures exposed to hemolysates and endothelial cells â€‹(ECs) from human brain microvascular exposed to glia-conditioned medium or SAH patient's CSF were used as experimental SAH models in vivo and in vitro. The results indicated that intrathecal administration of recombinant sRAGE significantly ameliorated the vasoconstriction of cortical arterioles and associated perfusion impairment, brain edema, reduced cell death, endothelial dysfunction, and improved motor performance at 24 and 48 â€‹h after SAH induction in rats. The in vitro results further showed that recombinant sRAGE significantly reduced astrocyte swelling and microglia activation, in parallel with decreased mRNA expression levels of pro-inflammatory cytokines including interleukin-6 (IL-6) and interleukin-1ß (IL-1ß) in vitro. Moreover, the in vitro model of SAH-induced p-eNOS and eNOS suppression, along with stress fiber formation in brain microvascular ECs, was effectively reversed by sRAGE treatment and led to a decrease in cleaved-caspase 3 expression. In summary, recombinant sRAGE effectively lessened microcirculation impairment and vascular injury after SAH via the mechanism of anti-inflammation, which may provide a potential therapeutic strategy for SAH.


Subject(s)
Subarachnoid Hemorrhage , Rats , Humans , Animals , Receptor for Advanced Glycation End Products/metabolism , Subarachnoid Hemorrhage/complications , Subarachnoid Hemorrhage/drug therapy , Subarachnoid Hemorrhage/metabolism , Rats, Sprague-Dawley , Neuroinflammatory Diseases , Microcirculation , Endothelial Cells/metabolism , Endothelial Cells/pathology
4.
Mar Environ Res ; 192: 106240, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37944349

ABSTRACT

Marine bivalves inhabiting intertidal and estuarine areas are frequently exposed to salinity stress due to persistent rainfall and drought. Through prolonged adaptive evolution, numerous bivalves have developed eurysalinity, which are capable of tolerating a wide range of salinity fluctuations through the sophisticated regulation of physiological metabolism. Current research has predominantly focused on investigating the physiological responses of bivalves to salinity stress, leaving a significant gap in our understanding of the adaptive evolutionary characteristics in euryhaline bivalves. Here, comparative genomics analyses were performed in two groups of bivalve species, including 7 euryhaline species and 5 stenohaline species. We identified 24 significantly expanded gene families and 659 positively selected genes in euryhaline bivalves. A significant co-expansion of solute carrier family 23 (SLC23) facilitates the transmembrane transport of ascorbic acids in euryhaline bivalves. Positive selection of antioxidant genes, such as GST and TXNRD, augments the capacity of active oxygen species (ROS) scavenging under salinity stress. Additionally, we found that the positively selected genes were significantly enriched in KEGG pathways associated with carbohydrates, lipids and amino acids metabolism (ALDH, ADH, and GLS), as well as GO terms related to transmembrane transport and inorganic anion transport (SLC22, CLCND, and VDCC). Positive selection of MCT might contribute to prevent excessive accumulation of intracellular lactic acids during anaerobic metabolism. Positive selection of PLA2 potentially promote the removal of damaged membranes lipids under salinity stress. Our findings suggest that adaptive evolution has occurred in osmoregulation, ROS scavenging, energy metabolism, and membrane lipids adjustments in euryhaline bivalves. This study enhances our understanding of the molecular mechanisms underlying the remarkable salinity adaption of euryhaline bivalves.


Subject(s)
Adaptation, Physiological , Osmoregulation , Reactive Oxygen Species , Osmoregulation/genetics , Salt Stress , Lipids , Salinity
5.
Mar Environ Res ; 192: 106198, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37757610

ABSTRACT

Marine bivalves in intertidal zones and land-based seawater ponds are constantly subjected to a wide range of salinity fluctuations due to heavy rainfall, intense drought, and human activities. As osmoconformers, bivalves rely primarily on rapid release or accumulation of free amino acids (FAAs) for osmoregulation. Euryhaline bivalves are capable of withstanding hyposaline and hypersaline environments through regulation of physiology, metabolism, and gene expression. However, current understanding of the molecular mechanisms underlying osmoregulation and salinity adaptation in euryhaline bivalves remains largely limited. In this study, RNA-seq, WGCNA and flow cytometric analysis were performed to investigate the physiological responses of hard clams (Mercenaria mercenaria) to acute short-term hyposalinity (AL) and hypersalinity (AH), and chronic long-term hyposalinity (CL) and hypersalinity (CH) stress. We found that amino acids biosynthesis was significantly inhibited and aminoacyl-tRNA biosynthesis was augmented to decrease intracellular osmolarity during hyposaline exposure. Under CH, numerous autophagy-related genes (ATGs) were highly expressed, and the autophagy activity of gill cells were significantly up-regulated. A significant decrease in total FAAs content was observed in gills after NH4Cl treatment, indicating that autophagy was crucial for osmoregulation in hard clams during prolonged exposure to hypersaline environments. To prevent premature or unnecessary apoptosis, the expression of cathepsin L was inhibited under AL and AH, and inhibitors of apoptosis was augmented under CL and CH. Additionally, neuroendocrine regulation was involved in salinity adaption in hard clams. This study provides novel insights into the physiological responses of euryhaline marine bivalves to hyposaline and hypersaline environments.


Subject(s)
Mercenaria , Animals , Humans , Amino Acids , Autophagy
6.
Fish Shellfish Immunol ; 141: 109084, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37722439

ABSTRACT

Air exposure (AE) is a significant environmental stressor that can lead to desiccation, hypoxia, starvation, and disruption of cellular homeostasis in marine bivalves. Autophagy is a highly conserved catabolic pathway that facilitates the degradation of damaged macromolecules and organelles, thereby supporting cellular stress responses. To date, autophagy-mediated resistance mechanisms to AE stress remain largely elusive in bivalves. In this study, we performed a multi-tool approach to investigate the autophagy-related physiological regulation in hard clams (Mercenaria mercenaria) under different duration of AE (T = 0, 1, 5, 10, 20, 30 days). We observed that autophagy of haemocytes was significantly activated on day 5. However, autophagy activity began to significantly decline from day 10 to day 30. Autophagy was significantly inhibited after antioxidant treatment, indicating that reactive oxygen species (ROS) was an endogenous inducer of autophagy. A significant decline in the survival rate of hard clams was observed after injection of ammonium chloride or carbamazepine during AE stress, suggesting that moderate autophagy was conducive for clam survival under AE stress. We also observed DNA breaks and high levels of apoptosis in haemocytes on day 10. Activation of apoptosis lagged behind autophagy, and the relationship between autophagy and apoptosis might shift from antagonism to synergy with the duration of stress. This study provides novel insights into the stress resistance mechanisms in marine bivalves.


Subject(s)
Mercenaria , Animals , Mercenaria/genetics , Reactive Oxygen Species/metabolism , Oxidative Stress/physiology , Antioxidants/metabolism , Homeostasis , Autophagy
8.
Article in English | MEDLINE | ID: mdl-36709861

ABSTRACT

Aquatic animals suffer from heat and hypoxia stress more frequently due to global climate change and other anthropogenic activities. Heat and hypoxia stress can significantly affect mitochondrial function and energy metabolism. Here, the response and adaptation characteristics of mitochondria and energy metabolism in the gill of the hard clam Mercenaria mercenaria under heat (35 °C), hypoxia (0.2 mg/L), and heat plus hypoxia stress (35 °C, 0.2 mg/L) after 48 h exposure were investigated. Mitochondrial membrane potentials were depolarized under environmental stress. Mitochondrial fusion, fission and mitophagy played a key role in maintain mitochondrion function. The AMPK subunits showed different expression under environmental stress. Acceleration of enzyme activities (phosphofructokinase, pyruvate kinase and lactic dehydrogenase) and accumulation of anaerobic metabolites in glycolysis and TCA cycle implied that the anaerobic metabolism might play a key role in providing energy. Accumulation of amino acids might help to increase tolerance under heat and heat combined hypoxia stress. In addition, urea cycle played a key role in amino acid metabolism to prevent ammonia/nitrogen toxicity. This study improved our understanding of the mitochondrial and energy metabolism responses of marine bivalves exposed to environmental stress.


Subject(s)
Hot Temperature , Mercenaria , Animals , Gills/metabolism , Energy Metabolism , Hypoxia/metabolism , Mercenaria/metabolism , Mitochondria/metabolism
9.
Arch Toxicol ; 97(2): 377-392, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36418572

ABSTRACT

Vincristine (VCR), an effective antitumor drug, has been utilized in several polytherapy regimens for acute lymphoblastic leukemia, neuroblastoma and rhabdomyosarcoma. However, clinical evidence shows that the metabolism of VCR varies greatly among patients. The traditional based body surface area (BSA) administration method is prone to insufficient exposure to VCR or severe VCR-induced peripheral neurotoxicity (VIPN). Therefore, reliable strategies are urgently needed to improve efficacy and reduce VIPN. Due to the unpredictable pharmacokinetic changes of VCR, therapeutic drug monitoring (TDM) may help to ensure its efficacy and to manage VIPN. At present, there is a lot of supporting evidence for the suitability of applying TDM to VCR therapy. Based on the consensus guidelines drafted by the International Association of Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT), this review aimed to summarize various available data to evaluate the potential utility of VCR TDM for cancer patients. Of note, valuable evidence has accumulated on pharmacokinetics variability, pharmacodynamics, drug exposure-clinical response relationship, biomarkers for VIPN prediction, and assays for VCR monitoring. However, there are still many relevant clinical pharmacological questions that cannot yet be answered merely based on insufficient evidence. Currently, we cannot recommend a therapeutic exposure range and cannot yet provide a dose-adaptation strategy for clinicians and patients. In areas where the evidence is not yet sufficient, more research is needed in the future. The precision medicine of VCR cannot rely on TDM alone and needs to consider the clinical, environmental, genetic background and patient-specific factors as a whole.


Subject(s)
Neuroblastoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Child , Humans , Adult , Vincristine/adverse effects , Drug Monitoring , Precision Medicine
10.
Transl Stroke Res ; 14(5): 688-703, 2023 10.
Article in English | MEDLINE | ID: mdl-36181630

ABSTRACT

Aneurysmal subarachnoid hemorrhage (SAH) can cause severe neurological deficits and high mortality. Early brain edema following SAH contributes to the initiation of microcirculation impairment and may further lead to delayed ischemic neurologic deficit (DIND). This study aimed to investigate whether dental pulp stem cell conditioned medium (DPSC-CM) ameliorates SAH-induced microcirculation impairment and the underlying mechanisms. SAH was induced via intrathecal injection of fresh autologous blood in Wistar male adult rat. DPSC-CM or DPSC-CM + insulin growth factor-1 (IGF-1) antibody was randomly administered by intrathecal route 5 min after SAH induction. To evaluate the underlying mechanisms of DPSC-CM in the treatment of SAH, primary rat astrocyte and microglia co-cultures were challenged with hemolysate or SAH-patient CSF in the presence or absence of DPSC-CM. The results showed that in vivo, DPSC-CM treatment decreased the brain water content, improved microcirculation impairment and enhanced functional recovery at 24 h post-SAH. DPSC-CM treatment also alleviated the expressions of water channel protein aquaporin-4 (AQP4) and pro-inflammatory cytokines, and enhanced the expressions of anti-inflammatory factors in the cortical region. However, all the beneficial effects of DPSC-CM were abrogated after treatment with IGF-1 neutralizing antibody. The in vitro results further showed that DPSC-CM treatment reduced hemolysate/SAH-patient CSF-induced astrocyte swelling and promoted M2 microglia polarization, partially through IGF-1/AKT signaling. The data suggested that DPSC-CM significantly reduced brain edema and rescued microcirculation impairment with concomitant anti-inflammatory benefits after SAH, and may potentially be developed into a novel therapeutic strategy for SAH.


Subject(s)
Brain Edema , Subarachnoid Hemorrhage , Rats , Male , Animals , Microglia , Rats, Wistar , Subarachnoid Hemorrhage/complications , Subarachnoid Hemorrhage/drug therapy , Culture Media, Conditioned/pharmacology , Culture Media, Conditioned/metabolism , Disease Models, Animal , Brain Edema/metabolism , Microcirculation , Astrocytes/metabolism , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor I/pharmacology , Insulin-Like Growth Factor I/therapeutic use , Dental Pulp/metabolism , Anti-Inflammatory Agents/therapeutic use , Stem Cells
11.
Chinese Journal of Epidemiology ; (12): 373-378, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-969916

ABSTRACT

Objective: To investigate the infection sources and the transmission chains of three outbreaks caused by 2019-nCoV Omicron variant possibly spread through cross-border logistics in Beijing. Methods: Epidemiological investigation and big data were used to identify the exposure points of the cases. Close contacts were traced from the exposure points, and the cases' and environmental samples were collected for nucleic acid tests. Positive samples were analyzed by gene sequencing. Results: The Omicron variant causing 3 outbreaks in Beijing from January to April, 2022 belonged to BA.1, BA.1.1 and BA.2. The outbreaks lasted for 8, 12 and 8 days respectively, and 6, 42 and 32 cases infected with 2019-nCoV were reported respectively. International mail might be the infection source for 1 outbreak, and imported clothes might be the infection sources for another 2 outbreaks. The interval between the shipment start time of the imported goods and the infection time of the index case was 3-4 days. The mean incubation period (Q1, Q3) was 3 (2,4) days and the mean serial interval (Q1, Q3) was 3 (2,4)days. Conclusions: The 3 outbreaks highlighted the risk of infection by Omicron variant from international logistics-related imported goods at normal temperature. Omicron variant has stronger transmissibility, indicating that rapid epidemiological investigation and strict management are needed.


Subject(s)
Humans , Beijing , SARS-CoV-2 , COVID-19 , Disease Outbreaks , China/epidemiology
12.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-985464

ABSTRACT

An epidemiological investigation was conducted on a cluster epidemic of COVID-19 in the vaccinated population in Beijing in 2022, and serum samples were collected from 21 infected cases and 61 close contacts (including 20 cases with positive nucleic acid in the isolation observation period). The results of antibody detection showed that the IgM antibody of two infected persons was positive, and the IgG antibody positive rates of patients who were converted, not converted to positive and infected persons were 36.84% (7/19), 63.41% (26/41) and 71.43% (15/21), respectively. About 98.78% of patients had been vaccinated with the SARS-CoV-2 inactivated vaccine. The positive rate of IgG antibody in patients immunized with three doses of vaccine was 86.00% (43/50), which was higher than that in patients with one or two doses [16.12% (5/31)]. The antibody level of M (Q1, Q3) in patients immunized with three doses was 4.255 (2.303, 7.0375), which was higher than that in patients with one or two doses [0.500 (0.500, 0.500)] (all P values<0.001). The antibody level of patients who were vaccinated less than three months [7.335 (1.909, 7.858)] was higher than that of patients vaccinated more than three months after the last vaccination [2.125 (0.500, 4.418)] (P=0.007). The positive rate and level of IgG antibody in patients who were converted to positive after three doses were 77.78% (7/9) and 4.207 (2.216, 7.099), respectively, which were higher than those in patients who were converted after one or two doses [0 and 0.500 (0.500, 0.500)] (all P values<0.05).


Subject(s)
Humans , COVID-19 , SARS-CoV-2 , Disease Outbreaks , COVID-19 Vaccines , Immunoglobulin G , Antibodies, Viral
13.
Comput Struct Biotechnol J ; 20: 4110-4121, 2022.
Article in English | MEDLINE | ID: mdl-36016713

ABSTRACT

Hypo-salinity events frequently occur in marine ecosystem due to persistent rainfall and freshwater inflow, reducing the cytosol osmolarity and triggering cellular stress responses in aquatic organisms. Euryhaline bivalves have developed sophisticated regulatory mechanisms to adapt to salinity fluctuations over a long period of evolution. In this study, we performed multiple biochemical assays, widely targeted metabolomics, and gene expression analysis to investigate the comprehensive metabolic responses to hypo-salinity stress and osmoregulation mechanisms in hard clam Mercenaria mercenaria, which is a euryhaline bivalve species widely cultured in China. During hypo-salinity stress, increased vacuoles appeared in gill filaments. The Na+ and Cl- concentrations in gills significantly decreased because of the up-regulation of Na+/K+-ATPase (NKA) activity. The cAMP content dramatically decreased at 5 d post hypo-salinity stress. Meanwhile, the gene expression levels of adenylate cyclase, proteinkinase A, and sodium and calcium channel proteins were evidently down-regulated, suggesting that cAMP-PKA pathway was inhibited to prevent ambient inorganic ions from entering the gill cells. Antioxidant metabolites, such as serine and Tyr-containing dipeptides, were significantly up-regulated to resist oxidative stress. Glycerolipid metabolism was strengthened to stabilize membrane structure when hypo-salinity stress was prolonged to 5 days. At 1 d post hypo-salinity stress, an increase in alanine and lactate contents marked the initiation of anaerobic metabolism. Acylcarnitines accumulation indicated that fatty acids ß-oxidation was promoted to provide energy for osmoregulation. The potential biomarkers of hypo-salinity stress were identified in hard clams. This study provides novel insights into the metabolic regulatory mechanisms to hypo-salinity stress in euryhaline bivalves.

14.
Mar Environ Res ; 176: 105606, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35316650

ABSTRACT

Mitogen-activated protein kinase kinase (MAPKK) was the hub component of the Mitogen-activated protein kinase (MAPK) signaling pathway and played an important role in the cellular response to environmental stress. In this study, we identified five MmMAPKK genes in hard clam Mercenaria mercenaria and found that all MmMAPKK genes contain a conserved protein kinase domain. The MmMAPKK genes derived from dispersed duplication were unevenly distributed in three chromosomes. Although the genome size was highly variable among different bivalve mollusks, the number of MAPKK genes was relatively stable. Phylogenetic analysis showed that bivalve MAPKK was divided into five clades, and amino acid sequences of MAPKK from the same clade consisted of similar conserved motifs. The syntenic analysis demonstrated that MmMAPKKs had the highest number of homologous gene pairs with Cyclina sinensis. MmMAPKKs were ubiquitously expressed in all examined tissues, and all MmMAPKK genes were highly expressed in the ovary. MmMAPKK genes showed stress-specific expression under envirionmental stress. MmMAPKK7 showed an upregulated in heat and heat plus hypoxia stress while MmMAPKK1 showed an upregulated in hypoxic stress groups. Dynamic changes of MmMAPKK7, MmMAPKK6 and MmMAPKK1 in hemocytes were observed in response to air exposure. MmMAPKK4 significantly downregulated after air exposure for five days. MmMAPKK7 and MmMAPKK6 might participate in adaptation to low salinity stress. Our results provided useful information about MAPKK and laid a foundation for further studies on MAPKK evolution in the bivalve.


Subject(s)
Mitogen-Activated Protein Kinase Kinases , Stress, Physiological , Amino Acid Sequence , Gene Expression Regulation, Plant , Mitogen-Activated Protein Kinase Kinases/chemistry , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Mitogen-Activated Protein Kinases/chemistry , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Phylogeny , Stress, Physiological/genetics
15.
Int. j. morphol ; 40(1): 233-241, feb. 2022. ilus
Article in English | LILACS | ID: biblio-1385574

ABSTRACT

SUMMARY: This study aims to investigate the effect of Tangzhouling on the morphological changes of Nissl bodies in the dorsal root ganglion of DM Rats. In this study, 69 rats were randomly divided into a control group (n = 10) and a model group (n = 59). The rats in the model group were randomly divided into a diabetic group (n = 11), a vitamin C group (n = 12), a low dose Tangzhouling group (n = 12), a medium dose Tangzhouling group (n = 12) and a high dose Tangzhouling group (n = 12). The dose of Tangzhouling in the low dose group was 5 times that of the adult dose, being 0.44g/kg/d. The dose of Tangzhouling in the medium dose group was 10 times that of the adult dose, being 0.88g/kg/d. The dose of Tangzhouling in the high dose group was 20 times that of the adult dose, being 1.75g/kg/d. All doses above are crude drug dosages. Rats in the vitamin C group were given 10 times the dose of an adult, being, 0.05 g/ kg/d. The diabetic group and the control group were given the same amount of distilled water. Drug delivery time is 16 weeks. The dorsal root ganglion was placed in a freezing tube at the end of the experiment. The morphological changes of Nissl bodies in the dorsal root ganglion were detected by HE and Nissl staining. The study results showed that vitamin C had no significant effect on the quantity, size and nucleolus. Tangzhouling can improvee the morphology, quantity and nucleolus of Nissl bodies to a certain extent, and the high dose is better than the lower dose. Tangzhouling capsules can improve the nerve function of DM rats through Nissl bodies.


RESUMEN: Este estudio tuvo como objetivo investigar el efecto de Tangzhouling en los cambios morfológicos de los cuerpos de Nissl en el ganglio de la raíz dorsal de las ratas DM. En este estudio, 69 ratas se dividieron aleatoriamente en un grupo control (n = 10) y un grupo modelo (n = 59). Las ratas del grupo modelo se dividieron aleatoriamente en un grupo diabéticos (n = 11), un grupo vitamina C (n = 12), un grupo de dosis baja de Tangzhouling (n = 12), un grupo de dosis media de Tangzhouling (n = 12) y un grupo de dosis alta de Tangzhouling (n = 12). La dosis de Tangzhouling en el grupo de dosis baja fue 5 veces mayor que la dosis del adulto, siendo 0,44 g/kg/d. La dosis de Tangzhouling en el grupo de dosis media fue 10 veces mayor que la dosis del adulto, siendo 0,88 g/kg/d. La dosis de Tangzhouling en el grupo de dosis alta fue 20 veces mayor que la dosis del adulto, siendo 1,75 g/kg/d. Todas las dosis anteriores son dosis de fármaco crudo. Se les administró 10 veces la dosis de un adulto a las ratas del grupo vitamina C, siendo 0,05 g/kg/d. El grupo de diabéticos y el grupo de control recibieron la misma cantidad de agua destilada. El tiempo de entrega del fármaco fue de 16 semanas. El ganglio de la raíz dorsal se colocó en un tubo de congelación al final del experimento. Los cambios morfológicos de los cuerpos de Nissl en el ganglio de la raíz dorsal se detectaron mediante tinción de HE y Nissl. Los resultados del estudio mostraron que la vitamina C no tuvo un efecto significativo sobre la cantidad, el tamaño y el nucléolo. Tangzhouling puede mejorar la morfología, la cantidad y el nucléolo de los cuerpos de Nissl hasta cierto punto, y es mejor la dosis alta que la dosis baja. Las cápsulas de Tangzhouling pueden mejorar la función nerviosa de las ratas DM a través de los cuerpos de Nissl.


Subject(s)
Animals , Rats , Peripheral Nervous System Diseases , Diabetic Neuropathies , Ganglia, Spinal/drug effects , Nissl Bodies/drug effects , Staining and Labeling , Disease Models, Animal
16.
Sci Total Environ ; 809: 151172, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-34710412

ABSTRACT

In the context of global climatic changes, marine organisms have been exposed to environmental stressors including heat and hypoxia. This calls for the design of multi-stressors to uncover the impact of oceanic factors on aquatic organisms. So far, little is known about the metabolic response of marine organisms, especially bivalves, to the combined effects of heat and hypoxia. In this study, we employed widely targeted metabolomic analysis to study the metabolic response of gills in hard clam, a heat- and hypoxia-tolerant bivalve. A total of 810 metabolites were identified. Results showed that the heat group (HT) and heat plus hypoxia group (HL) had a higher number of differential metabolites than the hypoxia group (LO). Glycolysis was affected by the heat and heat plus hypoxia stress. Moreover, anaerobic metabolic biomarkers were accumulated marking the onset of anaerobic metabolism. Environmental stresses may affect Tricarboxylic acid (TCA) cycle. Accumulation of carnitine and glycerophospholipid may promote fatty acid ß oxidation and maintain cell membrane stability, respectively. The high content of oxidized lipids (i.e., Leukotriene) in HL and HT groups implied that the organisms were under ROS stress. The significantly differential metabolites of organic osmolytes and vitamins might relieve ROS stress. Moreover, accumulation of thermoprotective osmolytes (monosaccharide, Trimethylamine N-oxide (TMAO)) accumulation was helpful to maintain protein homeostasis. This investigation provided new insights into the adaptation mechanisms of hard clam to heat, hypoxia and combined stress at the metabolite level and highlighted the roles of molecules and protectants.


Subject(s)
Mercenaria , Animals , Hot Temperature , Hypoxia , Metabolomics , Stress, Physiological
17.
Pharmgenomics Pers Med ; 15: 1029-1035, 2022.
Article in English | MEDLINE | ID: mdl-36605068

ABSTRACT

Vincristine-induced peripheral neuropathy (VIPN) is a common adverse effect of vincristine (VCR) for which there is no preventative or curative treatment. Here, we report a case of a patient suffering from severe VCR-related neurotoxicity. To explore the possible causes of severe VIPN in this patient, a set of genes involved in VCR metabolism, transport or are related to the cytoskeleton, microtubules, and inherited neurological diseases gene polymorphisms were examined via pharmacogenetic analyses. The genotyping results revealed the presence of a complex pattern of polymorphisms in CYP3A5, ABCC2, SYNE2, BAHD1, NPSR1, MTNR1B, CEP72, miR-4481 and miR-3117. A comprehensive understanding of all the pharmacogenetic risk factors for VIPN may explain the occurrence of severe neurotoxicity in our patient. This case brings to light the potential importance of pharmacogenetic testing in clinical practice. It also exemplifies the importance of developing early-detection strategies to optimize treatment regimens through prior risk stratification while reducing adverse drug reactions and personalizing therapy.

18.
Chinese Journal of Epidemiology ; (12): 305-309, 2022.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-935387

ABSTRACT

Objective: To investigate the epidemiological characteristics and the transmission chain of a family clustering of COVID-19 cases caused by severe acute respiratory 2019-nCoV Delta variant in Changping district of Beijing. Methods: Epidemiological investigation was conducted and big data were used to reveal the exposure history of the cases. Close contacts were screened according to the investigation results, and human and environmental samples were collected for nucleic acid tests. Positive samples were analyzed by gene sequencing. Results: On November 1, 2021, a total of 5 COVID-19 cases caused by 2019-nCoV Delta variant were reported in a family detected through active screening. The infection source was a person in the same designated isolation hotel where the first case of the family cluster was isolated from 22 to 27, October. The first case was possibly infected through aerosol particles in the ventilation duct system of the isolation hotel. After the isolation discharge on October 27, and the first case caused secondary infections of four family members while living together from October 27 to November 1, 2021. Conclusion: 2019-nCoV Delta variant is prone to cause family cluster, and close attention needs to be paid to virus transmission through ventilation duct system in isolation hotels.


Subject(s)
Humans , Aerosols , COVID-19 , Epidemics , SARS-CoV-2
19.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-958244

ABSTRACT

Objective:To evaluate the efficacy and safety of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines in patients with HIV-1 or chronic HBV infection through observing the dynamic changes in antibody responses to two-dose inactivated SARS-CoV-2 vaccines.Methods:This cohort study recruited 169 people (including 39 with HIV-1 infection, 36 with chronic HBV infection and 94 individuals without chronic diseases) who completed two doses (prime and boost) of inactivated SARS-CoV-2 vaccination from January to December 2021. The levels of SARS-CoV-2 IgM and IgG antibodies at 14 d, one month and two months after boosting and neutralizing antibodies at one month were detected by chemiluminescence immunoassay and competitive ELISA method.Results:The positive rates of antibodies against SARS-CoV-2 in the HIV-1 and HBV groups were higher at one month after booster immunization, but significantly decreases at two months. The double-negative rate of SARS-CoV-2 IgM and IgG antibodies was higher in the HIV-1 and HBV groups than in the control group. The single positive rate of IgG antibody at one month in the control group was 2.01-fold higher than that of the HIV-1 group and 3.17-fold higher than that of the HBV group. The single positive rate of IgG antibody in people aged 18-39 years in each group was higher than that in the 40-59 age group. The antibody persistence was better in the HBV group than in the HIV-1 group, and the levels of IgG antibody in the HBV group was higher than that in the HIV-1 group. The neutralizing capacity of serum antibodies was significantly lower in the HIV-1 group than in the other groups ( P<0.000 1). The inhibition rate of serum neutralizing antibodies in the HBV group was lower than that in the control group among people aged 18-39 years [(34.050±6.031)% vs (64.220±3.845)%, t=4.43, P<0.000 1]. SARS-CoV-2-specific antibody responses were induced in 73.08% (19/26) of the patients aged 18-39 years in the HIV-1 group and 80.00% (4/5) in the HBV group. Conclusions:There were differences in the antibody responses to inactivated SARS-CoV-2 vaccines between different age groups, and infectious diseases affected the positive rates of antibodies and the neutralizing capability against SARS-CoV-2.

20.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-936209

ABSTRACT

Objective: To analyze the correlation between loss of smell/taste and the number of real confirmed cases of coronavirus disease 2019 (COVID-19) worldwide based on Google Trends data, and to explore the guiding role of smell/taste loss for the COVID-19 prevention and control. Methods: "Loss of smell" and "loss of taste" related keywords were searched in the Google Trends platform, the data were obtained from Jan. 1 2019 to Jul. 11 2021. The daily and newly confirmed COVID-19 case number were collected from World Health Organization (WHO) since Dec. 30 2019. All data were statistically analyzed by SPSS 23.0 software. The correlation was finally tested by Spearman correlation analysis. Results: A total of data from 80 weeks were collected. The retrospective analysis was performed on the new trend of COVID-19 confirmed cases in a total of 186 292 441 cases worldwide. Since the epidemic of COVID-19 was recorded on the WHO website, the relative searches related to loss of smell/taste in the Google Trends platform had been increasing globally. The global relative search volumes of "loss of smell" and "loss of taste" on Google Trends was 10.23±2.58 and 16.33±2.47 before the record of epidemic while 80.25±39.81 and 80.45±40.04 after (t value was 8.67, 14.43, respectively, both P<0.001). In the United States and India, the relative searches for "loss of smell" and "loss of taste" after the record of epidemic were also much higher than before (all P<0.001). The correlation coefficients between the trend of weekly new COVID-19 cases and the Google Trends of "loss of smell" in the global, United States, and India was 0.53, 0.76, and 0.82 respectively (all P<0.001), the correlation coefficients with Google Trends of "loss of taste" was 0.54, 0.78, and 0.82 respectively (all P<0.001). The lowest and highest point of loss of smell/taste search curves of Google Trends in different periods appeared 7 to 14 days earlier than that of the weekly newly COVID-19 confirmed cases curves, respectively. Conclusions: There is a significant positive correlation between the number of newly confirmed cases of COVID-19 worldwide and the amount of keywords, such as "loss of smell" and "loss of taste", retrieved in Google Trends. The trend of big data based on Google Trends might predict the outbreak trend of COVID-19 in advance.


Subject(s)
Humans , Ageusia , Big Data , COVID-19 , Disease Outbreaks , Internet , Retrospective Studies , Smell , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...