Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 4375, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37587147

ABSTRACT

The beneficial effects of physical activity on brain ageing are well recognised, with exerkines, factors that are secreted into the circulation in response to exercise, emerging as likely mediators of this response. However, the source and identity of these exerkines remain unclear. Here we provide evidence that an anti-geronic exerkine is secreted by platelets. We show that platelets are activated by exercise and are required for the exercise-induced increase in hippocampal precursor cell proliferation in aged mice. We also demonstrate that increasing the systemic levels of the platelet-derived exerkine CXCL4/platelet factor 4 (PF4) ameliorates age-related regenerative and cognitive impairments in a hippocampal neurogenesis-dependent manner. Together these findings highlight the role of platelets in mediating the rejuvenating effects of exercise during physiological brain ageing.


Subject(s)
Aging , Cognitive Dysfunction , Neurogenesis , Platelet Factor 4 , Animals , Mice , Blood Platelets , Cognition , Hippocampus , Immunologic Factors
2.
J Neurosci ; 43(30): 5448-5457, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37419688

ABSTRACT

Activity-dependent changes in the number of AMPA-type glutamate receptors (AMPARs) at the synapse underpin the expression of LTP and LTD, cellular correlates of learning and memory. Post-translational ubiquitination has emerged as a key regulator of the trafficking and surface expression of AMPARs, with ubiquitination of the GluA1 subunit at Lys-868 controlling the post-endocytic sorting of the receptors into the late endosome for degradation, thereby regulating their stability at synapses. However, the physiological significance of GluA1 ubiquitination remains unknown. In this study, we generated mice with a knock-in mutation in the major GluA1 ubiquitination site (K868R) to investigate the role of GluA1 ubiquitination in synaptic plasticity, learning, and memory. Our results reveal that these male mice have normal basal synaptic transmission but exhibit enhanced LTP and deficits in LTD. They also display deficits in short-term spatial memory and cognitive flexibility. These findings underscore the critical roles of GluA1 ubiquitination in bidirectional synaptic plasticity and cognition in male mice.SIGNIFICANCE STATEMENT Subcellular targeting and membrane trafficking determine the precise number of AMPA-type glutamate receptors at synapses, processes that are essential for synaptic plasticity, learning, and memory. Post-translational ubiquitination of the GluA1 subunit marks AMPARs for degradation, but its functional role in vivo remains unknown. Here we demonstrate that the GluA1 ubiquitin-deficient mice exhibit an altered threshold for synaptic plasticity accompanied by deficits in short-term memory and cognitive flexibility. Our findings suggest that activity-dependent ubiquitination of GluA1 fine-tunes the optimal number of synaptic AMPARs required for bidirectional synaptic plasticity and cognition in male mice. Given that increases in amyloid-ß cause excessive ubiquitination of GluA1, inhibiting that GluA1 ubiquitination may have the potential to ameliorate amyloid-ß-induced synaptic depression in Alzheimer's disease.


Subject(s)
Neuronal Plasticity , Receptors, AMPA , Mice , Male , Animals , Receptors, AMPA/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism , Neuronal Plasticity/physiology , Synapses/physiology , Receptors, Glutamate/metabolism , Ubiquitination , Cognition , Hippocampus/metabolism
3.
Cancers (Basel) ; 14(10)2022 May 13.
Article in English | MEDLINE | ID: mdl-35626014

ABSTRACT

Melanoma incidence rates are high among individuals with fair skin and multiple naevi. Established prognostic factors are tumour specific, and less is known about prognostic host factors. A total of 556 stage I to stage IV melanoma patients from Germany with phenotypic and disease-specific data were analysed; 64 of these patients died of melanoma after a median follow-up time of 8 years. Germline DNA was assessed by the HumanCoreExome BeadChip and data of 356,384 common polymorphisms distributed over all 23 chromosomes were used for a genome-wide analysis. A suggestive genome-wide significant association of the intronic allele rs7551288*A with diminished melanoma-specific survival was detected (p = 2 × 10-6). The frequency of rs7551288*A was 0.43 and was not associated with melanoma risk, hair and eye colour, tanning and total naevus count. Cox regression multivariate analyses revealed a 5.31-fold increased risk of melanoma-specific death for patients with the rs7551288 A/A genotype, independent of tumour thickness, ulceration and stage of disease at diagnoses. The variant rs7551288 belongs to the DHCR24 gene, which encodes Seladin-1, an enzyme involved in the biosynthesis of cholesterol. Further investigations are needed to confirm this genetic variant as a novel prognostic biomarker and to explore whether specific treatment strategies for melanoma patients might be derived from it.

4.
Cell Rep ; 36(1): 109338, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34233182

ABSTRACT

NMDA receptor (NMDAR)-dependent Ca2+ influx underpins multiple forms of synaptic plasticity. Most synaptic NMDAR currents in the adult forebrain are mediated by GluN2A-containing receptors, which are rapidly inserted into synapses during long-term potentiation (LTP); however, the underlying molecular mechanisms remain poorly understood. In this study, we show that GluN2A is phosphorylated at Ser-1459 by Ca2+/calmodulin-dependent kinase IIα (CaMKIIα) in response to glycine stimulation that mimics LTP in primary neurons. Phosphorylation of Ser-1459 promotes GluN2A interaction with the sorting nexin 27 (SNX27)-retromer complex, thereby enhancing the endosomal recycling of NMDARs. Loss of SNX27 or CaMKIIα function blocks the glycine-induced increase in GluN2A-NMDARs on the neuronal membrane. Interestingly, mutations of Ser-1459, including the rare S1459G human epilepsy variant, prolong the decay times of NMDAR-mediated synaptic currents in heterosynapses by increasing the duration of channel opening. These findings not only identify a critical role of Ser-1459 phosphorylation in regulating the function of NMDARs, but they also explain how the S1459G variant dysregulates NMDAR function.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Ion Channel Gating , Protein Subunits/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Amino Acid Sequence , Animals , Female , Glycine , HEK293 Cells , Humans , Models, Biological , Mutation/genetics , Nerve Tissue Proteins , Phosphorylation , Phosphoserine/metabolism , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/chemistry , Receptors, N-Methyl-D-Aspartate/genetics , Synapses/metabolism
5.
Cell Rep ; 33(4): 108312, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33113376

ABSTRACT

Efficient retrieval of synaptic vesicles (SVs) is crucial to sustain synaptic transmission. Protein interacting with C-kinase 1 (PICK1) is a unique PDZ (postsynaptic density-95/disc-large/zona-occluden-1)- and BAR (Bin-Amphiphysin-Rvs )-domain-containing protein that regulates the trafficking of postsynaptic glutamate receptors. It is also expressed in presynaptic terminals and is associated with the SVs; however, its role in regulating SV recycling remains unknown. Here, we show that PICK1 loss of function selectively slows the kinetics of SV endocytosis in primary hippocampal neurons during high-frequency stimulation. PICK1 knockdown also causes surface stranding and mislocalization of major SV proteins, synaptophysin and vGlut1, along the axon. A functional PDZ domain of PICK1 and its interaction with the core endocytic adaptor protein (AP)-2 are required for the proper targeting and clustering of synaptophysin. Furthermore, PICK1 and its interaction with AP-2 are required for efficient SV endocytosis and sustained glutamate release. Our findings, therefore, identify PICK1 as a key regulator of presynaptic vesicle recycling in central synapses.


Subject(s)
Carrier Proteins/metabolism , Nuclear Proteins/metabolism , Animals , Humans , Synaptic Vesicles/metabolism
6.
J Neurochem ; 154(2): 121-143, 2020 07.
Article in English | MEDLINE | ID: mdl-31978252

ABSTRACT

The N-methyl-D-aspartate receptors (NMDARs) are ionotropic glutamate receptors that mediate the flux of calcium (Ca2+ ) into the post-synaptic compartment. Ca2+ influx subsequently triggers the activation of various intracellular signalling cascades that underpin multiple forms of synaptic plasticity. Functional NMDARs are assembled as heterotetramers composed of two obligatory GluN1 subunits and two GluN2 or GluN3 subunits. Four different GluN2 subunits (GluN2A-D) are present throughout the central nervous system; however, they are differentially expressed, both developmentally and spatially, in a cell- and synapse-specific manner. Each GluN2 subunit confers NMDARs with distinct ion channel properties and intracellular trafficking pathways. Regulated membrane trafficking of NMDARs is a dynamic process that ultimately determines the number of NMDARs at synapses, and is controlled by subunit-specific interactions with various intracellular regulatory proteins. Here we review recent progress made towards understanding the molecular mechanisms that regulate the trafficking of GluN2-containing NMDARs, focusing on the roles of several key synaptic proteins that interact with NMDARs via their carboxyl termini.


Subject(s)
Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Dendritic Spines/metabolism , Humans , Protein Subunits/metabolism , Protein Transport/physiology
7.
Cereb Cortex ; 29(8): 3590-3604, 2019 07 22.
Article in English | MEDLINE | ID: mdl-30272140

ABSTRACT

Understanding the migration of newborn neurons within the brain presents a major challenge in contemporary biology. Neuronal migration is widespread within the developing brain but is also important within the adult brain. For instance, stem cells within the ventricular-subventricular zone (V-SVZ) and the subgranular zone of dentate gyrus of the adult rodent brain produce neuroblasts that migrate to the olfactory bulb and granule cell layer of the dentate gyrus, respectively, where they regulate key brain functions including innate olfactory responses, learning, and memory. Critically, our understanding of the factors mediating neuroblast migration remains limited. The transcription factor nuclear factor I X (NFIX) has previously been implicated in embryonic cortical development. Here, we employed conditional ablation of Nfix from the adult mouse brain and demonstrated that the removal of this gene from either neural stem and progenitor cells, or neuroblasts, within the V-SVZ culminated in neuroblast migration defects. Mechanistically, we identified aberrant neuroblast branching, due in part to increased expression of the guanylyl cyclase natriuretic peptide receptor 2 (Npr2), as a factor contributing to abnormal migration in Nfix-deficient adult mice. Collectively, these data provide new insights into how neuroblast migration is regulated at a transcriptional level within the adult brain.


Subject(s)
Cell Movement/genetics , Dentate Gyrus/cytology , Lateral Ventricles/cytology , NFI Transcription Factors/genetics , Neural Stem Cells/metabolism , Animals , Gene Expression Regulation, Developmental , Gene Knockout Techniques , Mice , Neural Stem Cells/cytology , Neurogenesis/genetics , Receptors, Atrial Natriuretic Factor/genetics
8.
J Mol Biol ; 430(3): 363-371, 2018 02 02.
Article in English | MEDLINE | ID: mdl-29237556

ABSTRACT

Genetic polymorphisms in the fat mass and obesity-associated (FTO) gene have been strongly associated with obesity in humans. The cellular level of FTO is tightly regulated, with alterations in its expression influencing energy metabolism, food intake and body weight. Although the proteasome system is involved, the cellular mechanism underlying FTO protein turnover remains unknown. Here, we report that FTO undergoes post-translational ubiquitination on Lys-216. Knock-in HeLa cells harboring the ubiquitin-deficient K216R mutation displayed a slower rate of FTO turnover, resulting in an increase in the level of FTO as well as enhanced phosphorylation of the ribosomal S6 kinase. Surprisingly, we also found that K216R mutation reduced the level of nuclear FTO and completely abolished the nuclear translocation of FTO in response to amino acid starvation. Collectively, our results reveal the functional importance of ubiquitination in controlling FTO expression and localization, which may be crucial for determining body mass and composition.


Subject(s)
Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Proteasome Endopeptidase Complex/metabolism , Ubiquitination , Active Transport, Cell Nucleus , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/analysis , HeLa Cells , Humans , Phosphorylation , Proteolysis , Proteostasis , Ribosomal Protein S6 Kinases/metabolism , Ubiquitin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...