Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 167
Filter
1.
Chemosphere ; 363: 142785, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972463

ABSTRACT

In this study, we investigated the degradation of the flame retardant tetrabromobisphenol A (TBBPA) using platinized tungsten oxide (Pt/WO3), synthesized via a simple photodeposition method, under visible light. The results of degradation experiments show a significant enhancement in TBBPA degradation upon surface platinization of WO3, with the degradation rate increasing by 13.4 times compared to bare WO3. The presence of Pt on the WO3 surface stores conduction band electrons, which facilitates the two-electron reduction of oxygen and enhances the production of valence band holes (hVB+) and hydroxyl radicals (●OH). Both hVB+ and ●OH are significantly involved in the degradation of TBBPA in the visible light-irradiated Pt/WO3 system. This was verified through fluorescence spectroscopy employing coumarin as a chemical probe and oxidizing species-quenching experiments. The analysis of degradation products and their toxicity assessment demonstrate that the toxicity of TBBPA-contaminated water is significantly reduced after Pt/WO3 photocatalysis. The degradation rate of TBBPA increased with increasing Pt/WO3 dosage, reached an optimum at a Pt content of 0.5 wt%, but decreased with increasing TBBPA concentration. The decrease in degradation efficiency of Pt/WO3 was minor, both in the presence of various anions and after repeated use. This study proposes that Pt/WO3 is a viable photocatalyst for the degradation of TBBPA in water under visible light.

2.
Chemosphere ; 359: 142261, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38714246

ABSTRACT

In this study, we investigated the freezing-induced acceleration of dye bleaching by chloride-activated peroxymonosulfate (PMS). It has been observed that the oxidation of chloride by PMS generates a free chlorine species, such as hypochlorous acid (HOCl), under mild acidic and circumneutral pH condition. This process is the major reason for the enhanced oxidation capacity for electron-rich organic compounds (e.g., phenol) in the chloride-PMS system. However, we demonstrated that the chloride-PMS system clearly reduced the total organic carbon concentration (TOC), whereas the HOCl system did not lead to decrease in TOC. Overall, the chemical reaction is negligible in an aqueous condition if the concentrations of reagents are low, and freezing the solution accelerates the degradation of dye pollutants remarkably. Most notably, the pseudo-first order kinetic rate constant for acid orange 7 (AO7) degradation is approximately 0.252 h-1 with 0.5 mM PMS, 1 mM NaCl, initial pH 3, and a freezing temperature of -20 °C. AO7 degradation is not observed when the solution is not frozen. According to a confocal Raman-microscope analysis and an experiment that used an extremely high dose of reactants, the freeze concentration effect is the main reason for the acceleration phenomenon. Because the freezing phenomenon is spontaneous at high latitudes and at mid-latitudes in winter, and the chloride is ubiquitous elsewhere, the frozen chloride-PMS system has potential as a method for energy-free and eco-friendly technology for the degradation of organic pollutants in cold environments.


Subject(s)
Azo Compounds , Chlorides , Coloring Agents , Freezing , Oxidation-Reduction , Peroxides , Water Pollutants, Chemical , Azo Compounds/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Coloring Agents/chemistry , Peroxides/chemistry , Chlorides/chemistry , Kinetics , Hydrogen-Ion Concentration
3.
Article in English | MEDLINE | ID: mdl-38630396

ABSTRACT

Bisphenol A (BPA) is a widespread organic micro-pollutant, found in most environments, including alpine and Arctic regions, and several matrices such as waters and aerosols. Polar regions are characterized by periods of intense irradiation with no sunset due to the continuous sunlight, while alpine areas, despite following the day-night cycle of mid-latitudes, also undergo strong irradiation. For such conditions, it is possible that a fraction of the BPA present in snow may degrade through direct photolysis, producing other unknown species with different environmental mobility and possible ecotoxic effects. Furthermore, the snowpack is rich in species (known as photosensitizers) that facilitate indirect photodegradation processes through reactions involving hydroxyl radicals  · OH , singlet oxygen (1O2), excited triplet states of the organic fraction (3CDOM*), and nitrite/nitrate. In this study, we investigated both direct and indirect photodegradation of BPA in the presence of specific photosensitizers producing  · OH , 1O2, 3CDOM*, and NO2- to specifically explore the products of the reaction. The study was conducted in both liquid water and ice, under light and dark conditions. Results, obtained by HPLC-HRMS, revealed that the matrix in which the reaction takes place, in addition to the photosensitizer used, may influence the degradation by-products. This allows for the possibility of distinguishing the reaction environment based on the identified product.

4.
PLoS One ; 19(3): e0298999, 2024.
Article in English | MEDLINE | ID: mdl-38526988

ABSTRACT

Sulfurtransferases transfer of sulfur atoms from thiols to acceptors like cyanide. They are categorized as thiosulfate sulfurtransferases (TSTs) and 3-mercaptopyruvate sulfurtransferases (MSTs). TSTs transfer sulfur from thiosulfate to cyanide, producing thiocyanate. MSTs transfer sulfur from 3-mercaptopyruvate to cyanide, yielding pyruvate and thiocyanate. The present study aimed to isolate and characterize the sulfurtransferase FrST from Frondihabitans sp. PAMC28461 using biochemical and structural analyses. FrST exists as a dimer and can be classified as a TST rather than an MST according to sequence-based clustering and enzyme activity. Furthermore, the discovery of activity over a wide temperature range and the broad substrate specificity exhibited by FrST suggest promising prospects for its utilization in industrial applications, such as the detoxification of cyanide.


Subject(s)
Cysteine/analogs & derivatives , Thiocyanates , Thiosulfates , Sulfurtransferases/chemistry , Thiosulfate Sulfurtransferase , Pyruvic Acid , Cyanides , Sulfur
5.
Exp Mol Med ; 56(1): 1-18, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38177294

ABSTRACT

Chitinase-3-like protein 1 (CHI3L1) is a secreted glycoprotein that mediates inflammation, macrophage polarization, apoptosis, and carcinogenesis. The expression of CHI3L1 is strongly upregulated by various inflammatory and immunological diseases, including several cancers, Alzheimer's disease, and atherosclerosis. Several studies have shown that CHI3L1 can be considered as a marker of disease diagnosis, prognosis, disease activity, and severity. In addition, the proinflammatory action of CHI3L1 may be mediated via responses to various proinflammatory cytokines, including tumor necrosis factor-α, interleukin-1ß, interleukin-6, and interferon-γ. Therefore, CHI3L1 may contribute to a vast array of inflammatory diseases. However, its pathophysiological and pharmacological roles in the development of inflammatory diseases remain unclear. In this article, we review recent findings regarding the roles of CHI3L1 in the development of inflammatory diseases and suggest therapeutic approaches that target CHI3L1.


Subject(s)
Chitinases , Neoplasms , Humans , Chitinase-3-Like Protein 1/genetics , Neoplasms/genetics , Neoplasms/metabolism , Inflammation/metabolism , Cytokines
6.
Chemosphere ; 340: 139903, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37611765

ABSTRACT

The oxidation of arsenite (As(III)) to arsenate (As(V)) has received significant attention because it helps mitigate the hazardous and adverse effects of As(III) and subsequently improves the effectiveness of arsenic removal. This study developed an efficient freezing technology for the oxidative transformation of As(III) based on iodide (I-). For a sample containing a very low concentration of 20 µM As(III) and 200 µM I- frozen at -20 °C, approximately 19 µM As(V) was formed after reaction for 0.5 h at pH 3. This rapid conversion has never been achieved in previous studies. However, As(V) was not generated in water at 25 °C. The acceleration of the oxidation of As(III) by I- in ice may be attributed to the freeze-concentration effect. During freezing, all components (i.e., As(III), I-, and protons) are highly concentrated in the ice grain boundary regions, resulting in thermodynamically and kinetically favorable conditions for the redox reaction between As(III) and I-. The efficiency of the oxidation of As(III) using I- increased at high I- concentrations and low pH values. The low freezing temperature (below -20 °C) hindered the oxidative transformation of As(III) by I-. The efficiency of the oxidation of As(III) significantly increased using a fixed initial concentration of I- by subjecting the system to six freezing-melting cycles. The outcomes of this study suggest the possibility of the self-detoxification of As(III) in the natural environment, indicating the potential for developing an eco-friendly method for the treatment of As(III)-contaminated areas in regions with a cold climate. It also demonstrates radical remediation to almost completely remove a very small amount of As(III) that was input in As(III)-contaminated wastewater detoxification, a benchmark that existing methods have been unable to achieve.


Subject(s)
Arsenites , Freezing , Iodides , Ice , Cold Temperature , Protons
7.
J Hazard Mater ; 456: 131652, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37224712

ABSTRACT

This study demonstrates the transformation of acetaminophen by reactive nitrous acid in a frozen solution and its abnormal stoichiometry. The chemical reaction between acetaminophen and nitrous acid (AAP/NO2- system) was negligible in the aqueous solution; however, the reaction rapidly progressed if the solution started to freeze. The ultrahigh performance liquid chromatography-electrospray ionization tandem mass spectrometry measurements showed that polymerized acetaminophen and nitrated acetaminophen were formed in the proceeding reaction. Electron paramagnetic resonance spectroscopy measurements showed that nitrous acid oxidized acetaminophen via a one-electron transfer reaction producing acetaminophen-derived radical species, which is the cause of acetaminophen polymerization. We demonstrated that a relatively smaller dose of nitrite than acetaminophen caused significant acetaminophen degradation in the frozen AAP/NO2- system and revealed that the dissolved oxygen content notably affected acetaminophen degradation. We showed that the reaction occurs in a natural Arctic lake matrix (nitrite and acetaminophen spiked). Considering that the freezing phenomenon is common in the natural environment, our research provides a possible scenario for the freezing chemistry of nitrite and pharmaceuticals in environmental chemistry.


Subject(s)
Nitrites , Nitrous Acid , Acetaminophen/chemistry , Freezing , Nitrogen Dioxide
8.
J Phys Chem A ; 127(12): 2830-2838, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36919929

ABSTRACT

The abiotic mechanism of molecular iodine (I2) production from iodate (IO3-) remains largely unknown. Here, we demonstrate the production of I2 in the presence of IO3- and organic compounds in ice. When the solution containing IO3- (100 µM) and furfuryl alcohol (100 µM) at pH 3.0 was frozen at -20 °C, 13.1 µM of I2 was produced with complete degradation of furfuryl alcohol after 20 min. However, there was little change in the IO3- and furfuryl alcohol concentrations in water at 25 °C. The production of I2 in ice is due to the freeze concentration effect, which induces the accumulation of IO3-, furfuryl alcohol, and protons in the ice grain boundaries. This behavior facilitated the production of I2 via a redox reaction between IO3- and organic compounds. The production of I2 increased with increasing furfuryl alcohol concentration and decreasing pH. However, freezing temperature had a minor effect on the maximum production of I2. The production of I2 is highly dependent on the type of organic compounds. It was higher for organic compounds with higher electron-donating properties. This study suggests a new mechanism for I2 production, which is helpful for predicting precisely the atmospheric I2 budget in cold regions.

9.
Sci Total Environ ; 865: 161104, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36586697

ABSTRACT

Tungsten oxide (WO3) nanosheets were prepared as catalysts to activate hydrogen peroxide (H2O2) in arsenite (As(III)) oxidation. Ice particles were employed as templates to synthesize the WO3 nanosheets, enabling easy template removal via melting. Transmission electron microscopy and atomic force microscopy revealed that the obtained WO3 nanosheets were plate-like, with lateral sizes ranging from dozens of nanometers to hundreds of nanometers and thicknesses of <10 nm. Compared to that of the WO3 nanoparticle/H2O2 system, a higher efficiency of As(III) oxidation was observed in the WO3 nanosheet/H2O2 system. Electron spin resonance spectroscopy, radical quenching studies, and As(III) oxidation experiments under anoxic conditions suggested that the hydroperoxyl radical (HO2●) acted as the primary oxidant. The WO3 nanosheets possessed numerous surface hydroxyl groups and electrophilic metal centers, enhancing the production of HO2● via H2O2 activation. Various anions commonly present in As(III)-contaminated water exhibited little effect on As(III) oxidation in the WO3 nanosheet/H2O2 system. The high oxidation efficiency was maintained by adding H2O2 when it was depleted, suggesting that the catalytic activity of the WO3 nanosheets did not deteriorate after multiple catalytic cycles.

10.
Cancers (Basel) ; 14(17)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36077766

ABSTRACT

BACKGROUND AND AIM: This study investigated the administration of combination therapy, allogeneic natural killer (NK) cells and pembrolizumab in the treatment of advanced biliary tract cancer to determine the safety and tolerability (phase 1) and the efficacy and safety (phase 2a). METHODS: Forty patients (phase 1, n = 6; phase 2a, n = 34) were enrolled between December 2019 and June 2021. The patients received highly activated allogeneic NK cells ("SMT-NK") on weeks 1 and 2 and pembrolizumab on week 1. This 3-week schedule (one cycle) was repeated until confirmed disease progression, intolerable adverse events (AEs), patient withdrawal, or finishing the maximum treatment schedule. The tumor response was evaluated after every three cycles. RESULTS: In phase 1, four patients (66.7%) experienced seven AEs, but no severe AE was observed. In phase 2a, 126 AEs occurred in 29 patients (85.3%). Severe AEs (≥grade 3) were reported in 16 patients (47.1%). The overall response rate (ORR) was 17.4% in the full analysis set and 50.0% in the per-protocol set. CONCLUSIONS: SMT-NKs plus pembrolizumab resulted in no severe AEs directly related to the drug combination. The combination therapy also exerted antitumor activity with improved efficacy compared to the recent monotherapy with pembrolizumab in patients with advanced biliary tract cancer.

11.
Environ Sci Technol ; 56(4): 2323-2333, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34904827

ABSTRACT

We investigated benzoic acid oxidation via the reaction of hydrogen peroxide (H2O2) and nitrite (NO2-). The oxidation of benzoic acid by reactive nitrous acid (HONO) was negligible, and the reactivity of the H2O2/NO2- system decreased with a decrease in temperature under aqueous conditions. However, freezing markedly accelerated the chemical reaction. Based on Raman microscope measurements, concentrated species were confirmed in certain regions of the ice. We proposed that the change in nitrite speciation (accordingly, a decrease in the pH below pKa), derived from the freezing concentration effect, was the reason for the accelerated reactions. The oxidation characteristics of the system were monitored under varying conditions, such as initial pH, dosage ratio, benzoic acid concentration, and reaction with various benzene derivatives. The ultrahigh-performance liquid chromatography/electrospray ionization/mass spectrometry (UHPLC/ESI/MS) measurement showed that peroxynitrous acid (HOONO)-mediated oxidation generated hydroxylated and nitrated byproducts. Additionally, decarboxylated products were detected, indicating direct electron transfer from the organic compounds to HOONO. As freezing is a global phenomenon, and H2O2 and NO2- are ubiquitous in the environment, the transformation of aromatic compounds with H2O2/NO2- in cold environments must be considered in environmental chemistry.


Subject(s)
Hydrogen Peroxide , Nitrites , Acceleration , Benzoic Acid , Freezing , Hydrogen Peroxide/chemistry , Hydrogen-Ion Concentration , Ice , Nitrites/chemistry , Nitrogen Dioxide , Oxidation-Reduction
12.
Article in English | WPRIM (Western Pacific) | ID: wpr-968812

ABSTRACT

An extended-release (ER) fixed-dose combination (FDC) of tramadol 37.5 mg/acetaminophen 325 mg was developed due to the demand for varying dosages. This study aimed to evaluate the pharmacokinetics (PKs) for two tablets of the new developed tramadol 37.5 mg/acetaminophen 325 mg ER FDC (DW-0920, Wontran Semi ER®) as test formulation compared to one tablet of the tramadol 75 mg/acetaminophen 650 mg ER FDC (DW-0919, Wontran ER®) as reference formulation. A randomized, open-label, 2-way crossover study was conducted in 30 healthy subjects. Subjects were orally administered one of 2 formulations followed by an alternate formulation with a 7-day washout period. Blood samples were collected up to 36 hours post-dose. Plasma concentrations of tramadol and acetaminophen were determined using a validated high-performance liquid chromatography with tandem mass spectrometric method. The geometric mean ratios (GMRs) and their 90% confidence intervals (90% CIs) of test formulation to reference formulation were calculated for the maximum plasma concentration (Cmax) and the area under the plasma concentration-time curve from zero to the last measurable time point (AUClast). The PK profiles of 2 formulations were comparable. The GMRs (90% CI) of Cmax and AUClast for tramadol were 1.086 (1.047–1.127) and 1.008 (0.975–1.042), respectively. The corresponding values for acetaminophen were 0.956 (0.897–1.019) and 0.986 (0.961–1.011), respectively. All the values were within the bioequivalence range of 0.80–1.25. Two tablets of DW-0920 were comparable to one tablet of DW-0919. The DW-0920 may be used for optimal pharmacotherapy for pain control with a lower dose.

13.
Sci Total Environ ; 785: 147369, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-33957601

ABSTRACT

This study demonstrates the positive effects of dissolved bicarbonate and carbonate anions on peroxymonosulfate (PMS) induced oxidation and the remarkable acceleration of the reaction by freezing. More than 90% of the initial 4-chlorophenol (4-CP) decomposed in the frozen case, whereas only less than 20% of the 4-CP was removed in the aqueous case in the same time period. This accelerated reaction is attributed to the freeze-concentration of the dissolved substrates (i.e., PMS, bicarbonate, and pollutants) in the quasi-liquid layer at the ice grain boundaries between ice crystals. The reaction between bicarbonate and PMS was found to be unique because none of the effects were observed in the phosphate and hydroxide cooperated system with freezing, although the base activation of PMS could participate under basic conditions (pH > 9). Based on electron paramagnetic resonance spectroscopy measurements and comparison with the photo-excited Rose Bengal system as a reference system for singlet oxygen (1O2) generation, 1O2 was found to have a minor effect on the oxidation of 4-CP in the frozen bicarbonate-PMS system. While, direct electron transfer from the target organic substrate to the PMS was suggested as a major mechanism of 4-CP oxidation, because the selected target organic substrates were decomposed with different tendencies, and the consumption of PMS was accelerated by the presence of an electron donating compound. The results show the potential applicability of the freezing phenomenon, which occurs naturally in the mid-latitude and polar area, to help a decomposition of water dissolved organic pollutants by the imitation of the natural purification process.

14.
Plast Reconstr Surg Glob Open ; 9(3): e3361, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33747685

ABSTRACT

We report a case of reconstruction of a left midfoot defect with a chimeric partial scapula and skin flap in a 20-year-old man. After radical debridement, bone and soft tissue defects were reconstructed with a chimeric scapula and skin flap. The postoperative course was uneventful. The patient could walk well without support, and bone union was achieved 6 months after surgery. In 14 months of follow-up, no clinical complications (including new ulcer or stress fracture) were noted and full ambulation was achieved, with the patient returning to his previous work. We suggest that the chimeric scapula and skin flap may be a useful alternative option for midfoot reconstruction.

15.
Environ Sci Technol ; 55(8): 5382-5392, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33733765

ABSTRACT

This study is the first to demonstrate the capability of Cl- to markedly accelerate organic oxidation using thermally activated peroxymonosulfate (PMS) under acidic conditions. The treatment efficiency gain allowed heat-activated PMS to surpass heat-activated peroxydisulfate (PDS). During thermal PMS activation at excess Cl-, accelerated oxidation of 4-chlorophenol (susceptible to oxidation by hypochlorous acid (HOCl)) was observed along with significant degradation of benzoic acid and ClO3- occurrence, which involved oxidants with low substrate specificity. This indicated that heat facilitated HOCl formation via nucleophilic Cl- addition to PMS and enabled free chlorine conversion into less selective oxidizing radicals. HOCl acted as a key intermediate in the major oxidant transition based on temperature-dependent variation in HOCl concentration profiles, kinetically retarded organic oxidation upon NH4+ addition, and enabled rapid organic oxidation in heated PMS/HOCl mixtures. Chlorine atom that formed via the one-electron oxidation of Cl- by the sulfate radical served as the primary oxidant and was involved in hydroxyl radical production. This was corroborated by the quenching effects of alcohols and bicarbonates, reactivity toward multiple organics, and electron paramagnetic resonance spectral features. PMS outperformed PDS in degrading benzoic acid during thermal activation operated in reverse osmosis concentrate, which was in conflict with the well-established superiority of heat-activated PDS.


Subject(s)
Chlorides , Water Pollutants, Chemical , Chlorine , Hot Temperature , Oxidation-Reduction , Peroxides , Water Pollutants, Chemical/analysis
16.
Ultrason Sonochem ; 70: 105311, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32871384

ABSTRACT

Hydrodynamic cavitation (HC) has emerged as one of the most potential technologies for industrial-scale water treatment. The advanced rotational hydrodynamic cavitation reactors (ARHCRs) that appeared recently have shown their high effectiveness and economical efficiency compared with conventional devices. For the interaction-type ARHCRs where cavitation is generated from the interaction between the cavitation generation units (CGUs) located on the rotor and the stator, their flow field, cavitation generation mechanism, and interaction process are still not well defined. The present study experimentally and numerically investigated the cavitation flow characteristics in a representative interaction-type ARHCR which has been proposed in the past. The cavitation generation mechanism and development process, which was categorized into "coinciding", "leaving", and "approaching" stages, were analyzed explicitly with experimental flow visualization and computational fluid dynamics (CFD) simulations. The changes in the cavitation pattern, area ratio, and sheet cavitation length showed high periodicity with a period of 0.5 ms/cycle at a rotational speed of 3,600 rpm in the flow visualization. The experimental and CFD results indicated that sheet cavitation can be generated on the downstream sides of both the moving and the static CGUs. The sheet cavitation was induced and continuously enlarged in the "leaving" and "approaching" stages and was crushed after the moving CGUs coincided with the static CGUs. In addition, vortex cavitation was formed in the vortex center of each CGU due to high-speed rotating fluid motion. The shape and size of the vortex cavitation were determined by the compression effect produced by the interaction. The findings of this work are important for the fundamental understanding, design, and application of the ARHCRs in water treatment.

17.
J Hazard Mater ; 404(Pt B): 123976, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33080555

ABSTRACT

The engineering of oxygen vacancies in CeO2 nanoparticles (NPs) allows the specific fine-tuning of their oxidation power, and this can be used to rationally control their activity and selectivity in the photocatalytic oxidation (PCO) of aromatic pollutants. In the current study, a facile strategy for generating exceptionally stable oxygen vacancies in CeO2 NPs through simple acid (CeO2-A) or base (CeO2-B) treatment was developed. The selective (or mild) PCO activities of CeO2-A and CeO2-B in the degradation of a variety of aromatic substrates in water were successfully demonstrated. CeO2-B has more oxygen vacancies and exhibits superior photocatalytic performance compared to CeO2-A. Control of oxygen vacancies in CeO2 facilitates the adsorption and reduction of dissolved O2 due to their high oxygen-storage ability. The oxygen vacancies in CeO2-B as active sites for oxygen-mediated reactions act as (i) adsorption and reduction reaction sites for dissolved O2, and (ii) photogenerated electron scavenging sites that promote the formation of H2O2 by multi-electron transfer. The oxygen vacancies in CeO2-B are particularly stable and can be used repeatedly over 30 h without losing activity. The selective PCOs of organic substrates were studied systematically, revealing that the operating mechanisms for UV-illuminated CeO2-B are very different from those for conventional TiO2 photocatalysts. Thus, the present study provides new insights into the design of defect-engineered metal oxides for the development of novel photocatalysts.

18.
Article in English | WPRIM (Western Pacific) | ID: wpr-890291

ABSTRACT

Background@#We hypothesized in this study that the characteristics of retear cases vary according to surgeon volume and that surgical outcomes differ between primary and revision arthroscopic rotator cuff repair (revisional ARCR). @*Methods@#Surgeons performing more than 12 rotator cuff repairs (RCRs) per year were defined as high-volume surgeons, and those performing fewer than 12 RCRs were considered low-volume surgeons. Of the 47 patients who underwent revisional ARCR at our clinic enrolled in this study, 21 cases were treated by high-volume surgeons and 26 cases by low-volume surgeons. In all cases, the interval betweenprimary surgery and revisional ARCR, degree of “acromial scuffing,” number of anchors, RCR technique, retear pattern, fatty infiltration,retear size, operating time, and clinical outcome were recorded. @*Results@#During primary surgery, significantly more lateral anchors (p=0.004) were used, and the rate of use of the double-row repair technique was significantly higher (p<0.001) in the high- versus low-volume surgeon group. Moreover, the “cut-through pattern” was observedsignificantly more frequently among the cases treated by high- versus low-volume surgeons (p=0.008). The clinical outcomes after revisional ARCR were not different between the two groups. @*Conclusions@#Double-row repair during primary surgery and the cut-through pattern during revisional ARCR were more frequent in thehigh- versus low-volume surgeon groups. However, no differences in retear site or size, fatty infiltration grade, or outcomes were observedbetween the groups.

19.
Article in English | WPRIM (Western Pacific) | ID: wpr-919412

ABSTRACT

Genetic polymorphisms of enzymes and transporters associated with the absorption, distribution, metabolism, and elimination (ADME) of drugs are one of the major factors that contribute to interindividual variations in drug response. In the present study, we aimed to elucidate the pharmacogenetic profiles of the Korean population using the Affymetrix Drug Metabolizing Enzyme and Transporters (DMET™) platform. A total of 1,012 whole blood samples collected from Korean subjects were genotyped using the DMET™ plus microarray. In total, 1,785 single nucleotide polymorphism (SNP) markers for 231 ADME genes were identified. The genotype and phenotype of 13 clinically important ADME genes implemented in the Clinical Pharmacogenetics Implementation Consortium guidelines were compared among different ethnic groups. Overall, the genotype frequencies of the Korean population were similar to those of the East Asian population. Several genes, notably CYP2C19 and VKORC1, showed marked differences in Koreans compared to Europeans (EURs) or Africans (AFRs). The percentage of CYP2C19 poor metabolizers was 15% in Koreans and less than 3% in EURs or AFRs. The frequencies of causative SNPs of the VKORC1 gene for the low warfarin dose phenotype were 90%, 60%, and 10% in Koreans, EURs and AFRs, respectively. Our findings can be utilized for optimal pharmacotherapy in Korean patients.

20.
Article in English | WPRIM (Western Pacific) | ID: wpr-897995

ABSTRACT

Background@#We hypothesized in this study that the characteristics of retear cases vary according to surgeon volume and that surgical outcomes differ between primary and revision arthroscopic rotator cuff repair (revisional ARCR). @*Methods@#Surgeons performing more than 12 rotator cuff repairs (RCRs) per year were defined as high-volume surgeons, and those performing fewer than 12 RCRs were considered low-volume surgeons. Of the 47 patients who underwent revisional ARCR at our clinic enrolled in this study, 21 cases were treated by high-volume surgeons and 26 cases by low-volume surgeons. In all cases, the interval betweenprimary surgery and revisional ARCR, degree of “acromial scuffing,” number of anchors, RCR technique, retear pattern, fatty infiltration,retear size, operating time, and clinical outcome were recorded. @*Results@#During primary surgery, significantly more lateral anchors (p=0.004) were used, and the rate of use of the double-row repair technique was significantly higher (p<0.001) in the high- versus low-volume surgeon group. Moreover, the “cut-through pattern” was observedsignificantly more frequently among the cases treated by high- versus low-volume surgeons (p=0.008). The clinical outcomes after revisional ARCR were not different between the two groups. @*Conclusions@#Double-row repair during primary surgery and the cut-through pattern during revisional ARCR were more frequent in thehigh- versus low-volume surgeon groups. However, no differences in retear site or size, fatty infiltration grade, or outcomes were observedbetween the groups.

SELECTION OF CITATIONS
SEARCH DETAIL
...