Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Open Med (Wars) ; 18(1): 20230654, 2023.
Article in English | MEDLINE | ID: mdl-37197357

ABSTRACT

Atrial fibrosis is involved in the progression of atrial fibrillation (AF). miR-499-5p is the most downregulated microRNA in arrhythmogenic cardiomyopathy hearts. Sry-related high-mobility-group box 6 (SOX6) is associated with apoptosis, inflammatory responses, and fibrosis. This study investigated the mechanism of miR-499-5p in ameliorating AF rats by regulating SOX6. AF rat models were established by injecting Ach-CaCl2 mixture, and the rats were treated with Lv-miR-499-5p/oe-SOX6/si-SOX6 before modeling. AF duration was recorded using electrocardiogram. miR-499-5p and SOX6 expression levels in the myocardium were determined by reverse transcription-quantitative polymerase chain reaction. The binding of miR-499-5p and SOX6 was validated. The atrial fibrosis degree and cardiomyocyte apoptosis were assessed using the Masson and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining methods. Levels of SOX6, atrial fibrosis markers (collage I/α-SMA/TGFß1), cell cycle-related proteins (p21/CDC25/Cyclin B1), and cell senescence markers (SA-ß-gal/γ-H2AX) were measured using Western blotting and immunohistochemistry. miR-499-5p was downregulated and SOX6 was upregulated in AF rats. miR-499-5p overexpression shortened the AF duration, alleviated atrial fibrosis, and decreased collage I/α-SMA/TGFß1. miR-499-5p targeted SOX6 to ameliorate atrial fibrosis. AF rats exhibited increased p21/CDC25/Cyclin B1/SA-ß-gal/γ-H2AX levels and raised cardiomyocyte apoptosis. SOX6 silencing downregulated p21 and alleviated cardiomyocyte cycle arrest, cell senescence, and apoptosis in AF rats. Shortly, miR-499-5p suppresses atrial fibrosis and cardiomyocyte senescence by targeting SOX6 and downregulating p21, thus mitigating AF in rats.

2.
Curr Med Chem ; 30(22): 2577-2589, 2023.
Article in English | MEDLINE | ID: mdl-36201274

ABSTRACT

BACKGROUND: Histone deacetylase 3 (HDAC3) has been studied in chronic heart failure (CHF), while the regulatory mechanism of HDAC3 on the development of CHF in regulating microRNA (miR)-26b-3p/high mobility group AT-hook 2 (HMGA2) axis has not been extensively investigated. This study aimed to probe the effects of HDAC3, miR-26b-3p and HMGA2 on CHF. METHODS: CHF rat models were established using aortic coarctation. HDAC3, miR-26b-3p and HMGA2 levels in CHF rats were examined. Thereafter, the CHF rats were injected with relative oligonucleotides and plasmids of HDAC3, miR-26b-3p and HMGA2 to detect the cardiac function, inflammatory reaction, myocardial tissue pathological changes, and cardiomyocyte apoptosis. The binding relationship between miR-26b-3p and HMGA2 and the interaction between HDAC3 and miR-26b-3p were validated. RESULTS: HDAC3 and HMGA2 were elevated, while miR-26b-3p was decreased in CHF rats. The reduced HDAC3 or HMGA2 or enriched miR-26b-3p attenuated cardiac dysfunction, inflammatory reaction, myocardial tissue pathological changes and cardiomyocyte apoptosis in CHF rats, while the reduction of miR-26b-3p exerted the opposite effects. Furthermore, the inhibition of the miR-26b-3p or elevation of HMGA2 reversed the effect of reduced HDAC3 on mitigating CHF progression. Mechanically, miR-26b-3p targeted HMGA2 and HDAC3 bound to miR-26-3p. CONCLUSION: Downregulation of HDAC3 relieves cardiac function in CHF rats via mediating miR-26b-3p/HMGA2 axis. This study provides novel theory references and a distinct direction for the therapy strategies of CHF.


Subject(s)
Heart Failure , MicroRNAs , Rats , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Histone Deacetylases/metabolism , Down-Regulation , Heart Failure/genetics
3.
J Bioenerg Biomembr ; 54(2): 81-91, 2022 04.
Article in English | MEDLINE | ID: mdl-35322290

ABSTRACT

OBJECTIVE: Atrial fibrillation (AF) is a major cause of stroke with lifetime risks. microRNAs (miRNAs) are associated with AF attenuation, yet the mechanism remains unknown. This study investigated the functional mechanism of miR-29b in atrial fibrosis in AF. METHODS: The AF rat model was established by a 7-day intravenous injection of Ach-CaCl2 mixture. AF rats were injected with adeno-associated virus (AAv)-miR-29b and TGFßRΙ overexpression plasmid. AF duration was recorded by electrocardiogram. Atrial fibrosis was observed by Masson staining. Expressions of COL1A1, COL3A1, TGFßRΙ, TGFßΙ, miR-29b and Smad-2/3 pathway-related proteins in atrial tissues were detected by RT-qPCR and Western blot. Binding sites of miR-29b and TGFßRΙ were predicted and their target relationship was verified by dual-luciferase reporter assay. RESULTS: miR-29b was poorly expressed and expressions of COL1A1, COL3A1, TGFßRΙ, and TGFß1 were increased in atrial tissues of AF rats. miR-29b overexpression alleviated atrial fibrosis, reduced expressions of COL1A1, COL3A1, and TGFß1, and shortened AF duration in AF rats. TGFßRΙ was highly expressed in atrial tissues of AF rats. miR-29b targeted TGFßRΙ. TGFßRΙ overexpression overcame the improving effect of miR-29b overexpression on AF. miR-29b overexpression decreased ratios of p-Smad-2/3 and Smad-2/3 and inhibited the Smad-2/3 pathway. CONCLUSION: miR-29b might mitigate atrial fibrosis in AF rats by targeting TGFßRΙ and inhibiting the Smad-2/3 pathway.


Subject(s)
Atrial Fibrillation , MicroRNAs , Animals , Atrial Fibrillation/genetics , Atrial Fibrillation/metabolism , Atrial Fibrillation/pathology , Fibrosis , Heart Atria/metabolism , Heart Atria/pathology , MicroRNAs/metabolism , Rats , Signal Transduction , Smad2 Protein/metabolism , Smad3 Protein/metabolism
4.
Neuropsychiatr Dis Treat ; 17: 2791-2802, 2021.
Article in English | MEDLINE | ID: mdl-34465995

ABSTRACT

BACKGROUND: Ischemic stroke is a devastating disease with very limited therapeutics. Although miR-101 has been reported to play crucial roles in various human diseases, its role in ischemic stroke remains unclear. METHODS: Ischemia-reperfusion (I/R) injury neuronal cells and rat model with I/R injury were constructed. Viability and apoptosis of I/R model cells with miR-101 overexpression or downregulation were evaluated. Potential targets of miR-101 were predicted using miRNA database microRNA.org and confirmed using luciferase reporter assays. Meanwhile, JAK2 and p-STAT3 protein levels were evaluated by Western blot. In addition, rescue experiments (silencing of JAK2) were applied to determine the role of miR-101 in cerebral I/R injury. RESULTS: MiR-101 was significantly downregulated in OGD/R-induced neuronal cells and brain tissues with I/R injury. MiR-101 overexpression (miR-101 mimics) significantly promoted viability and inhibited apoptosis of OGD/R-induced neuronal cells in vitro and efficiently protected rats from ischemic brain injury in vivo. By contrast, miR-101 inhibitor exacerbated growth defect, apoptosis, and ischemic brain injury. Luciferase reporter assay indicated that JAK2 was a direct target of mIR-101, and JAK2 silencing effectively reversed the miR-101 inhibitor-induced neuronal cell apoptosis in vitro and reduced cerebral infarction volume in vivo. CONCLUSION: Our study demonstrated that miR-101 efficiently protected neuronal cells from apoptosis and ischemic brain injury through regulating the JAK2/STAT3 signaling pathway, suggesting that miR-101 might be a potential target for treatment of ischemic stroke.

5.
Neurochem Res ; 46(4): 866-877, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33453006

ABSTRACT

Hyperbaric oxygen (HBO) therapy is considered a safe and feasible method that to provide neuroprotection against ischemic stroke. However, the therapy mechanisms of HBO have not been fully elucidated. We hypothesized that the mechanism underlying the protective effect of HBO preconditioning (HBO-PC) against cerebral ischemia/reperfusion injury was related to inhibition of mitochondrial apoptosis and energy metabolism disorder. To test this hypothesis, an ischemic stroke model was established by middle cerebral artery occlusion (MCAO) in rats. HBO-PC involved five consecutive days of pretreatment before MCAO. In additional experiments, X chromosome-linked inhibitor of apoptosis protein (XIAP) and second mitochondria-derived activator of caspases (SMAC) shRNA and NC plasmids were intraventricularly injected into rat brains after MCAO (2 h). After 24 h, all rats underwent motor function evaluation, which was assessed by modified Garcia scores. TTC staining for the cerebral infarct and cerebral edema, and TUNEL staining for cell apoptosis, were also analyzed. Reactive oxygen species and antioxidative enzymes in rat brains were detected, as well as mitochondrial complex enzyme activities, ATP levels, and Na+/K+ ATPase activity. Western blot was used to detect apoptotic proteins including Bcl-2, Bax, caspase-3, caspase-9, cyc-c, XIAP, and SMAC. HBO-PC remarkably reduced the infarct volume and improved neurological deficits. Furthermore, HBO-PC alleviated oxidative stress and regulated the expression of apoptosis-related proteins. Moreover, HBO-PC inhibited the decrease in ATP levels, mitochondrial complex enzyme activities, and Na+/K+ ATPase activity to maintain stable energy metabolism. XIAP knockdown weakened the protective effect of HBO, whereas SMAC knockdown strengthened its protective effect. The effects of HBO-PC can be attributed to inhibition of ischemia/hypoxia-induced mitochondrial apoptosis and energy metabolism disturbance. The action of HBO-PC is related to the XIAP and SMAC signaling pathways.


Subject(s)
Apoptosis/physiology , Energy Metabolism/physiology , Hyperbaric Oxygenation , Infarction, Middle Cerebral Artery/therapy , Mitochondria/metabolism , Reperfusion Injury/therapy , Animals , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Gene Knockdown Techniques , Inhibitor of Apoptosis Proteins/genetics , Inhibitor of Apoptosis Proteins/metabolism , Ischemic Stroke/therapy , Male , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...