Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 267
Filter
1.
Chemosphere ; 363: 142754, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964720

ABSTRACT

Endocrine disrupting chemicals are of concern because of possible human health effects, thus they are frequently included in biomonitoring studies. Current analytical methods are focused on known chemicals and are incapable of identifying or quantifying other unknown chemicals and their metabolites. Non-targeted analysis (NTA) methods are advantageous since they allow for broad chemical screening, which provides a more comprehensive characterization of human chemical exposure, and can allow elucidation of metabolic pathways for unknown chemicals. There are still many challenges associated with NTA, which can impact the results obtained. The chemical space, i.e., the group of known and possible compounds within the scope of the method, must clearly be defined based on the sample preparation, as this is critical in identifying chemicals with confidence. Data acquisition modes and mobile phase additives used with liquid chromatography coupled to high-resolution mass-spectrometry can affect the chemicals ionized and structural identification based on the spectral quality. In this study, a sample preparation method was developed using a novel clean-up approach with CarbonS cartridges, for endocrine-disrupting chemicals in urine, including new bisphenol A analogues and benzophenone-based UV filters, like methyl bis (4-hydroxyphenyl acetate). The study showed that data dependent acquisition (DDA) had a lower identification rate (40%) at low spiking levels, i.e., 1 ng/mL, compared to data independent acquisition (DIA) (57%), when Compound Discoverer was used. In DDA, more compounds were identified using Compound Discoverer, with an identification rate of 95% when ammonium acetate was compared to acetic acid (82%) as a mobile phase additive. TraceFinder software had an identification rate of 53% at 1 ng/mL spiking level using the DDA data, compared to 40% using the DIA data. Using the developed method, 2,4 bisphenol F was identified for the first time in urine samples. The results show how NTA can provide human exposure information for risk assessment and regulatory action but standardized reporting of procedures is needed to ensure study results are reproducible and accurate. His Majesty the King in Right of Canada, as represented by the Minister of Health, 2024.

2.
BMC Womens Health ; 24(1): 187, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509531

ABSTRACT

BACKGROUND: Residual microcalcifications after neoadjuvant chemotherapy (NAC) are challenging for deciding extent of surgery and questionable for impact on prognosis. We investigated changes in the extent and patterns of microcalcifications before and after NAC and correlated them with pathologic response. We also compared prognosis of patients depending on presence of residual microcalcifications after NAC. METHODS: A total of 323 patients with invasive breast carcinoma treated with neoadjuvant chemotherapy at Kangbuk Samsung Hospital and Samsung Medical center from March 2015 to September 2018 were included. Patients were divided into four groups according to pathologic response and residual microcalcifications. Non-pCRw/mic group was defined as breast non-pCR with residual microcalcifications. Non-pCRw/o mic group was breast non-pCR without residual microcalcifications. pCRw/mic group was breast pCR with residual microcalcifications. pCRw/o mic group was breast pCR without residual microcalcifications. The first aim of this study is to investigate changes in the extent and patterns of microcalcifications before and after NAC and to correlate them with pathologic response. The second aim is to evaluate oncologic outcomes of residual microcalcifications according to pathologic response after NAC. RESULTS: There were no statistical differences in the extent, morphology, and distribution of microcalcifications according to pathologic response and subtype after NAC (all p > 0.05). With a median follow-up time of 71 months, compared to pCRw/o mic group, the hazard ratios (95% confidence intervals) for regional recurrence were 5.190 (1.160-23.190) in non-pCRw/mic group and 5.970 (1.840-19.380) in non-pCRw/o mic group. Compared to pCRw/o mic group, the hazard ratios (95% CI) for distant metastasis were 8.520 (2.130-34.090) in non-pCRw/mic group, 9.120 (2.850-29.200) in non-pCRw/o mic group. Compared to pCRw/o mic, the hazard ratio (95% CI) for distant metastasis in pCRw/mic group was 2.240 (0.230-21.500) without statistical significance (p = 0.486). CONCLUSIONS: Regardless of residual microcalcifications, patients who achieved pCR showed favorable long term outcome compared to non-pCR group.


Subject(s)
Breast Neoplasms , Calcinosis , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Neoadjuvant Therapy/adverse effects , Prognosis , Breast/pathology , Calcinosis/diagnostic imaging , Calcinosis/drug therapy , Calcinosis/etiology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Chemotherapy, Adjuvant , Retrospective Studies
3.
ACS Appl Mater Interfaces ; 16(7): 9581-9592, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38332526

ABSTRACT

Microlens arrays (MLAs) with a tunable imaging ability are core components of advanced micro-optical systems. Nevertheless, tunable MLAs generally suffer from high power consumption, an undeformable rigid body, large and complex systems, or limited focal length tunability. The combination of reconfigurable smart materials with MLAs may lead to distinct advantages including programmable deformation, remote manipulation, and multimodal tunability. However, unlike photopolymers that permit flexible structuring, the fabrication of tunable MLAs and compound eyes (CEs) based on transparent smart materials is still rare. In this work, we report reconfigurable MLAs that enable tunable imaging based on shape memory polymers (SMPs). The smart MLAs with closely packed 200 × 200 microlenses (40.0 µm in size) are fabricated via a combined technology that involves wet etching-assisted femtosecond laser direct writing of MLA templates on quartz, soft lithography for MLA duplication using SMPs, and the mechanical heat setting for programmable reconfiguration. By stretching or squeezing the shape memory MLAs at the transition temperature (80 °C), the size, profiles, and spatial distributions of the microlenses can be programmed. When the MLA is stretched from 0 to 120% (area ratio), the focal length is increased from 116 to 283 µm. As a proof of concept, reconfigurable MLAs and a 3D CE with a tunable field of view (FOV, 160-0°) have been demonstrated in which the thermally triggered shape memory deformation has been employed for tunable imaging. The reconfigurable MLAs and CEs with a tunable focal length and adjustable FOV may hold great promise for developing smart micro-optical systems.

4.
Public Health Pract (Oxf) ; 6: 100429, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37766739

ABSTRACT

Objectives: Project organisations reflect a modern and non-bureaucratic form of organising public-sector activities, which promises innovation, entrepreneurship, and order and control to bring about change. This study seeks to investigate the project organisation Singapore Health Services (SingHealth) Region Health System (RHS)'s approach to implementing the Healthier Singapore (HSG) strategy, including models of governance and perceptions of RHS leads, identify the challenges facing the RHS, and to draw insights into the conditions necessary for using project organisation as a policy tool in policy implementation. Study design: We adopted a policy ethnography approach to answering the research question. Methods: The approach involved: (1) non-participant observation with fieldnotes taken during meetings, events, programme activities, and conferences concerning SingHealth and HSG implementation; (2) analysis of 52 organisational documents; and (3) interviews with 21 senior SingHealth leaders from the RHS Executive Committee, involved in envisioning and overseeing the production of RHS projects to align with the HSG strategy (March to September 2022). Results: Evidence demonstrates the presence of multiple governance and interactive governance in HSG implementation, including legitimising the RHS as the project organisation; engaging the private corporations; incorporating the citizens; and working with non-governmental organisations. However, the RHS faced many challenges, ranging from governance, workforce, financing, IT infrastructure and care models, problem definition, primary care and legacy issues, knowledge management, and being pandemic-informed in its delivery. Conclusion: The RHS will need to address these challenges through the necessary constitutive, directive, and operational actions, and interactive governance to enhance its institutional capacity to implement the HSG Strategy.

5.
J Expo Sci Environ Epidemiol ; 33(4): 524-536, 2023 07.
Article in English | MEDLINE | ID: mdl-37380877

ABSTRACT

Non-targeted analysis (NTA) and suspect screening analysis (SSA) are powerful techniques that rely on high-resolution mass spectrometry (HRMS) and computational tools to detect and identify unknown or suspected chemicals in the exposome. Fully understanding the chemical exposome requires characterization of both environmental media and human specimens. As such, we conducted a review to examine the use of different NTA and SSA methods in various exposure media and human samples, including the results and chemicals detected. The literature review was conducted by searching literature databases, such as PubMed and Web of Science, for keywords, such as "non-targeted analysis", "suspect screening analysis" and the exposure media. Sources of human exposure to environmental chemicals discussed in this review include water, air, soil/sediment, dust, and food and consumer products. The use of NTA for exposure discovery in human biospecimen is also reviewed. The chemical space that has been captured using NTA varies by media analyzed and analytical platform. In each media the chemicals that were frequently detected using NTA were: per- and polyfluoroalkyl substances (PFAS) and pharmaceuticals in water, pesticides and polyaromatic hydrocarbons (PAHs) in soil and sediment, volatile and semi-volatile organic compounds in air, flame retardants in dust, plasticizers in consumer products, and plasticizers, pesticides, and halogenated compounds in human samples. Some studies reviewed herein used both liquid chromatography (LC) and gas chromatography (GC) HRMS to increase the detected chemical space (16%); however, the majority (51%) only used LC-HRMS and fewer used GC-HRMS (32%). Finally, we identify knowledge and technology gaps that must be overcome to fully assess potential chemical exposures using NTA. Understanding the chemical space is essential to identifying and prioritizing gaps in our understanding of exposure sources and prior exposures. IMPACT STATEMENT: This review examines the results and chemicals detected by analyzing exposure media and human samples using high-resolution mass spectrometry based non-targeted analysis (NTA) and suspect screening analysis (SSA).


Subject(s)
Environmental Pollutants , Exposome , Humans , Environmental Pollutants/analysis , Plasticizers/analysis , Soil , Dust/analysis , Water/analysis
6.
Chemosphere ; 328: 138567, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37023898

ABSTRACT

Intermediate volatile organic compounds (IVOCs) have recently been characterized for their contributions to the formation of secondary organic aerosol in atmospheric air. However, IVOCs in air in various indoor environments have not been characterized yet. In this study, we characterized and measured IVOCs, volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs), in residential indoor air in Ottawa, Canada. IVOCs, including n-alkanes, branched-chain alkanes (b-alkanes), unspecified complex mixtures (UCM) IVOCs, and oxygenated IVOCs (such as fatty acids), were found to have a large impact on indoor air quality. The results indicate that the indoor IVOCs behave differently from those in the outdoor environment. IVOCs in the studied residential air ranged from 14.4 to 69.0 µg/m3, with a geometric mean of 31.3 µg/m3, accounting for approximately 20% of the total organic compounds (IVOCs, VOCs and SVOCs) in indoor air. The total b-alkanes and UCM-IVOCs were found to have statistically significant positive correlations with indoor temperature but have no correlations with airborne particulate matter less than 2.5 µm (PM2.5) as well as ozone (O3) concentration. However, indoor oxygenated IVOCs behaved differently from b-alkanes and UCM-IVOCs, with a statistically significant positive correlation with indoor relative humidity but no correlation with other indoor environmental conditions.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Air Pollution, Indoor/analysis , Air Pollutants/analysis , Canada , Alkanes , Environmental Monitoring/methods
8.
J Colloid Interface Sci ; 629(Pt A): 582-592, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36088703

ABSTRACT

Photothermal responsive slippery surfaces with switchable superwettability are promising in the fields of biomedicine, self-cleaning, anti-corrosion, and lab-on-a-chip systems. However, the development of a light switchable slippery surface that combines high-performance photothermal materials with hierarchical microstructures of special orientation remains challenging, which limits the applications in anisotropic droplet manipulation. Herein, we demonstrate a photothermal responsive slippery surface based on laser-structured graphene and polyvinylidene difluoride composites (L-G@PVDF) for controllable droplet manipulation. The L-G@PVDF film exhibits high light absorption (∼95.4%) in the visible and NIR region. After lubricating with paraffin, the resultant surface shows excellent self-healing ability and light-responsive wettability change due to the photothermal effect of L-G@PVDF and the hot melting effect of paraffin. Additionally, by introducing anisotropic grooved structures, the paraffin-infused L-G@PVDF surface displays anisotropic wettability that further affects droplet manipulation under light irradiation. Also, the photothermal responsive slippery property endows the paraffin-infused L-G@PVDF surface with excellent anti-frosting and de-icing capability. Moreover, the smart paraffin-infused L-G@PVDF surface can be combined with a microfluidics chip for light-driven automatic sampling. This study offers insight into the rational design of photothermal responsive slippery surfaces for controllable droplet manipulation.


Subject(s)
Graphite , Graphite/chemistry , Paraffin , Wettability , Lasers
9.
Anal Bioanal Chem ; 415(1): 35-44, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36435841

ABSTRACT

Non-targeted analysis (NTA) using high-resolution mass spectrometry allows scientists to detect and identify a broad range of compounds in diverse matrices for monitoring exposure and toxicological evaluation without a priori chemical knowledge. NTA methods present an opportunity to describe the constituents of a sample across a multidimensional swath of chemical properties, referred to as "chemical space." Understanding and communicating which region of chemical space is extractable and detectable by an NTA workflow, however, remains challenging and non-standardized. For example, many sample processing and data analysis steps influence the types of chemicals that can be detected and identified. Accordingly, it is challenging to assess whether analyte non-detection in an NTA study indicates true absence in a sample (above a detection limit) or is a false negative driven by workflow limitations. Here, we describe the need for accessible approaches that enable chemical space mapping in NTA studies, propose a tool to address this need, and highlight the different ways in which it could be implemented in NTA workflows. We identify a suite of existing predictive and analytical tools that can be used in combination to generate scores that describe the likelihood a compound will be detected and identified by a given NTA workflow based on the predicted chemical space of that workflow. Higher scores correspond to a higher likelihood of compound detection and identification in a given workflow (based on sample extraction, data acquisition, and data analysis parameters). Lower scores indicate a lower probability of detection, even if the compound is truly present in the samples of interest. Understanding the constraints of NTA workflows can be useful for stakeholders when results from NTA studies are used in real-world applications and for NTA researchers working to improve their workflow performance. The hypothetical ChemSpaceTool suggested herein could be used in both a prospective and retrospective sense. Prospectively, the tool can be used to further curate screening libraries and set identification thresholds. Retrospectively, false detections can be filtered by the plausibility of the compound identification by the selected NTA method, increasing the confidence of unknown identifications. Lastly, this work highlights the chemometric needs to make such a tool robust and usable across a wide range of NTA disciplines and invites others who are working on various models to participate in the development of the ChemSpaceTool. Ultimately, the development of a chemical space mapping tool strives to enable further standardization of NTA by improving method transparency and communication around false detection rates, thus allowing for more direct method comparisons between studies and improved reproducibility. This, in turn, is expected to promote further widespread applications of NTA beyond research-oriented settings.


Subject(s)
Retrospective Studies , Reproducibility of Results , Prospective Studies , Mass Spectrometry/methods , Reference Standards
11.
Anal Bioanal Chem ; 415(2): 303-316, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36346455

ABSTRACT

Humans are often exposed to phthalates and their alternatives, on account of their widespread use in PVC as plasticizers, which are associated with harmful human effects. While targeted biomonitoring provides quantitative information for exposure assessment, only a small portion of phthalate metabolites has been targeted. This results in a knowledge gap in human exposure to other unknown phthalate compounds and their metabolites. Although the non-targeted analysis (NTA) approach is capable of screening a broad spectrum of chemicals, there is a lack of harmonized workflow in NTA to generate reproducible data within and between different laboratories. The objective of this study was to compare two different NTA data acquisition modes, the data-dependent (DDA) and independent (DIA) acquisition (DDA), as well as two data analysis approaches, based on diagnostic ions and Compound Discoverer software for the prioritization of candidate precursors and identification of unknown compounds in human urine. Liquid chromatography coupled to high-resolution mass spectrometry was used for sample analysis. The combination of three-diagnostic-ion extraction and DDA data acquisition was able to improve data filtering and data analysis for prioritizing phthalate metabolites. With DIA, 25 molecular features were identified in human urine, while 32 molecular features were identified in the same urine samples using DDA data. The number of molecular features identified with level 1 confidence was 11 and 9 using DIA and DDA data, respectively. The study demonstrated that besides sample preparation, the impact of data acquisition must be taken into account when developing a NTA method and a consistent protocol for evaluating such an impact is necessary.


Subject(s)
Phthalic Acids , Humans , Chromatography, Liquid , Mass Spectrometry , Phthalic Acids/chemistry , Data Analysis
12.
Sci Bull (Beijing) ; 67(5): 501-511, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-36546171

ABSTRACT

Self-healing materials (SHMs) with unique mechanical and electronic properties are promising for self-reparable electronics and robots. However, the self-healing ability of emerging two-dimensional (2D) materials, for instance, MXenes, has not been systematically investigated, which limits their applications in self-healing electronics. Herein, we report the homogeneous self-healing assembly (homo-SHA) of MXene and the heterogeneous self-healing assembly (hetero-SHA) of MXene and graphene oxide (GO) under moisture treatments. The self-healing mechanism has been attributed to the hydration induced interlayer swelling of MXene and GO and the recombination of hydrogen bond networks after water desorption. The multiform hetero-SHA of MXene and GO not only enables facile fabrication of free-standing soft electronics and robots, but also endows the resultant devices with damage-healing properties. As proof-of-concept demonstrations, free-standing soft electronic devices including a generator, a humidity sensor, a pressure sensor, and several robotic devices have been fabricated. The hetero-SHA of MXene and GO is simple yet effective, and it may pioneer a new avenue to develop miniature soft electronics and robots based on 2D materials.

13.
Nano Lett ; 22(20): 8093-8100, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36201184

ABSTRACT

Graphene oxide (GO) films with natural "quantum-confined-superfluidics" (QSF) channels for moisture actuation have emerged as a smart material for actuators and soft robots. However, programming the deformation of GO by engineering QSF nanochannels around 1 nm is extremely challenging. Herein, we report the reconfigurable, reversible, and redefinable deformation of GO under moisture actuation by tailoring QSF channels via moisture-assisted strain-induced wrinkling (MSW). The shape fixity ratio of a general GO film can reach ∼84% after the MSW process, and the shape recovery ratio is ∼83% at room temperature under moisture actuation. The flexible shaping and deformation abilites, as well as the self-healing property of GO make it possible to fabricate soft robots using GO. Besides, as a proof-of-concept, passive electronics and soft robots capable of crawling, turning, switching circuit, and automatic somersault are demonstrated. With unique shaping and deformation abilities, GO may bring great implications for future soft robotics.


Subject(s)
Graphite , Robotics , Smart Materials
14.
Nat Commun ; 13(1): 5634, 2022 09 26.
Article in English | MEDLINE | ID: mdl-36163128

ABSTRACT

Inspired by insect compound eyes (CEs) that feature unique optical schemes for imaging, there has recently been growing interest in developing optoelectronic CE cameras with comparable size and functions. However, considering the mismatch between the complex 3D configuration of CEs and the planar nature of available imaging sensors, it is currently challenging to reach this end. Here, we report a paradigm in miniature optoelectronic integrated CE camera by manufacturing polymer CEs with 19~160 logarithmic profile ommatidia via femtosecond laser two-photon polymerization. In contrast to µ-CEs with spherical ommatidia that suffer from defocusing problems, the as-obtained µ-CEs with logarithmic ommatidia permit direct integration with a commercial CMOS detector, because the depth-of-field and focus range of all the logarithmic ommatidia are significantly increased. The optoelectronic integrated µ-CE camera enables large field-of-view imaging (90°), spatial position identification and sensitive trajectory monitoring of moving targets. Moreover, the miniature µ-CE camera can be integrated with a microfluidic chip and serves as an on-chip camera for real-time microorganisms monitoring. The insect-scale optoelectronic µ-CE camera provides a practical route for integrating well-developed planar imaging sensors with complex micro-optics elements, holding great promise for cutting-edge applications in endoscopy and robot vision.


Subject(s)
Insecta , Optics and Photonics , Animals , Lasers , Photons , Polymers
15.
Article in English | MEDLINE | ID: mdl-35657172

ABSTRACT

Stimuli-responsive actuators (SRAs) that can harvest environmental energies and convert them to mechanical works without additional energy-supplying systems have revealed great potential for robotic applications. However, at present, the practical usage of SRAs is significantly limited due to the problems with respect to solo responsiveness, simple deformation, and the difficulties for large-scale and cost-effective production. In this paper, multi-responsive paper actuators with multicoating nanoarchitectonics that enable complex deformation have been fabricated through a very simple painting process on common papers. The resultant paper actuator permits large-scale and low-cost production (A4 size: ∼0.5 dollar). The paper actuators that consist of a paper/graphite/polydimethylsiloxane sandwich structure can be actuated by multi-form stimuli, including moisture, temperature, light, and volatile organic compounds. More importantly, the bending deformation of the paper actuators can be further programmed by controlling the pencil drawing orientation, providing the feasibility of performing more complex deformations. Several multi-responsive paper actuators, including organic compound-responsive smart devices working in the liquid environment, moisture-enabled terrestrial crawling actuator, and a light-responsive attitude-control actuator integrated with an airplane model, have been demonstrated. The development of multi-responsive yet cost-effective paper actuators may hold great promise for a wide range of practical applications, for instance, soft micro-electromechanical systems, lab-on-a-chip systems, smart homes, and robotics.

16.
Gynecol Endocrinol ; 38(7): 543-547, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35604062

ABSTRACT

BACKGROUND: As reported that the usage of estrogen and/or progesterone increases the risk of mammary gland hyperplasia (MGH) with conflicting results. Therefore, we conducted a meta-analysis to higher elucidate the relationship between hormones and MGH. METHOD: PubMed, Embase, Web of Science, Cochrane Library, Chinese National Knowledge Infrastructure, and Wan-fang database were searched for studies until April 28, 2021. RESULTS: Nine related studies were included in the present meta-analysis. We found that the usage of estrogen and/or progesterone had a significant association with increasing the risk of MGH (RR = 1.56, 95% CI: 1.13-2.15, p = .000). The subgroup results showed that the risk of MGH increased in the Mix population (RR = 1.72, CI: 1.58-1.88, p < .001) but no significant difference in the Asian population. Meanwhile, as for using estrogen plus progesterone (EPP) and postmenopausal women the risk of MGH, respectively, increased (RR = 1.74, CI: 1.22-2.47, p = .002) and (RR = 1.75, CI: 1.24-2.47, p = .001) but no significant different for using estrogen alone and premenopausal women. CONCLUSIONS: This study findings indicated that using estrogen and/or progesterone might increase the risk of MGH in premenopausal and postmenopausal women.


Subject(s)
Mammary Glands, Human , Progesterone , Estrogens/adverse effects , Female , Humans , Hyperplasia , Premenopause
17.
J Am Soc Mass Spectrom ; 33(6): 981-995, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35588523

ABSTRACT

Phthalates have been studied due to their linkages with adverse developmental effects; however, metabolites of this class of compounds are undercharacterized and are poorly captured by traditional targeted analysis. In this study, we developed a nontargeted analysis approach for identifying and classifying phthalate metabolites based on a comprehensive study of their fragmentation pathways in electrospray ionization (ESI) quadrupole-time-of-flight mass spectrometry (QTOF-MS). This approach identifies molecular features in the data as phthalate metabolites via the detection of three structurally significant fragment ions. Then phthalate metabolites are classified into four types based on the presence of additional fragment ions specific to each type. Cleavage mechanisms for each class of phthalate metabolite are proposed based on fragmentation patterns generated at various collision energies (CE). All of the tested phthalate metabolites including oxidative and nonoxidative metabolites produced a fragment ion at m/z 121.0295, representing the deprotonated benzoate ion [C6H5COO]-. Most tested phthalate metabolites can produce a specific ion at m/z 147.0088, the deprotonated o-phthalic anhydride ion. However, phthalate carboxylate metabolites can only produce the [M-H-R]- ion at m/z 165.0193 and do not produce the fragment at m/z 147.0088. Other phthalate oxidative metabolites (hydroxyl- and oxo-) follow a different fragmentation pathway than nonoxidative metabolites. With this workflow, eight unknown phthalate metabolites were putatively identified in pooled urine, with one identified as a previously unreported metabolite by a combination of the MS/MS spectrum and the predicted retention time. Method detection limits for phthalate metabolites in urine were also estimated.


Subject(s)
Phthalic Acids , Tandem Mass Spectrometry , Ions/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods
18.
BMC Cancer ; 22(1): 166, 2022 Feb 12.
Article in English | MEDLINE | ID: mdl-35151264

ABSTRACT

BACKGROUND: Synovial sarcoma (SS) is a type of soft tissue sarcoma (STS) of undetermined tissue origin, which is characterized by the recurrent pathognomonic chromosomal translocation t (X;18)(p11.2; q11.2). Studies have shown that SS is a malignant tumor originating from cancer stem cells or pluripotent mesenchymal stem cells and may be related to fusion genes. In addition, some studies have indicated that the induction of epithelial-mesenchymal transition (EMT) via the TGF-ß1/Smad signaling pathway leads to SS metastasis. METHODS: We analyzed the effects of SYT-SSX1 on the stemness of SS cells via TGF-ß1/Smad signaling in vitro. The SYT-SSX1 fusion gene high expression cell was constructed by lentiviral stable transfer technology. SYT-SSX1 and SW982 cells were cultured and tested for sphere-forming ability. The transwell migration assay and flow cytometry were used to assess the migration ability of the sphere cells as well as the expression of CSC-related markers. We treated SYT-SSX1 cells with rhTGF-ß1 (a recombinant agent of the TGF-ß1 signaling pathway) and SB431542 and observed morphological changes. A CCK-8 experiment and a western blot (WB) experiment were conducted to detect the expression of TGF-ß1 signaling pathway- and EMT-related proteins after treatment. The SYT-SSX1 cells were then cultured and their ability to form spheres was tested. Flow cytometry, WB, and quantitative real-time polymerase chain reaction (qRT-PCR) were used to detect the expression of CSC surface markers on SYT-SSX1 sphere cells. RESULTS: It was found that SYT-SSX1 has stronger sphere-forming ability, migration ability, and higher expression of CSC-related molecules than SW982 cells. Through treating SYT-SSX1 and SW982 cells with rhTGF-ß1 and SB431542, we found that TGF-ß1 enhanced the proliferation of cells, induced EMT, and that TGF-ß1 enhanced the characteristics of tumor stem cells. CONCLUSIONS: Our results suggest that SYT-SSX1 enhances invasiveness and maintains stemness in SS cells via TGF-ß1/Smad signaling. These findings reveal an effective way to potentially improve the prognosis of patients with SS by eliminating the characteristics of cancer stem cells (CSCs) during treatment.


Subject(s)
Oncogene Proteins, Fusion/metabolism , Sarcoma, Synovial/genetics , Sarcoma/genetics , Signal Transduction/genetics , Soft Tissue Neoplasms/genetics , Biomarkers, Tumor/genetics , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Humans , Neoplasm Invasiveness/genetics , Prognosis , Sarcoma/pathology , Sarcoma, Synovial/pathology , Smad Proteins/metabolism , Soft Tissue Neoplasms/pathology , Transforming Growth Factor beta1/metabolism , Translocation, Genetic/genetics
19.
Journal of Breast Disease ; (2): 29-39, 2022.
Article in English | WPRIM (Western Pacific) | ID: wpr-937786

ABSTRACT

Purpose@#This study investigated the correlation between non-mass-like enhancement (NME) observed on preoperative breast magnetic resonance imaging (MRI) and the actual pathological size of breast cancer. We further examined the effect of NME on the positive resection margins during partial mastectomy. @*Methods@#We retrospectively collected data from breast cancer patients who underwent surgery between January 2018 and September 2020. Patients were divided into two groups based on their MRI findings: NME and no-NME (mass-like lesion only) groups. The medical records, including MRI findings and clinicopathological information of patients, were collected retrospectively, and correlations with pathologic results were analyzed. Propensity score matching was applied to develop comparable cohorts of the NME group and no-NME group. @*Results@#This study included a total of 317 patients, with 66 and 251 patients in the NME and no-NME groups, respectively. The mean pathologic size of invasive lesion was significantly smaller than the mean lesion size in the NME group (1.55±1.39 cm vs. 3.45±1.81 cm, p<0.001). The mean pathologic size of ductal carcinoma in situ (DCIS) lesions was larger than that in the NME group but without statistical significance (3.91±2.67 cm vs. 3.50±1.79 cm, p=0.326). In the NME group, NME estimated DCIS size to within 1 cm in 20 patients (30.3%) and overestimated invasive lesion size by more than 1 cm in 31 patients (46.9%). NME (vs. no-NME; odds ratio [OR], 2.967; 95% confidence interval [CI], 0.878-10.025) showed a tendency to predict positive resection margins, but this was not statistically significant (p=0.080). @*Conclusion@#NME findings on MRI showed a similar extent of DCIS lesions. NME findings on preoperative MRI should be considered an important factor for measuring the extent of tumors, especially in DCIS patients.

20.
Innovation (Camb) ; 2(4): 100168, 2021 Nov 28.
Article in English | MEDLINE | ID: mdl-34746905

ABSTRACT

Electro-responsive actuators (ERAs) hold great promise for cutting-edge applications in e-skins, soft robots, unmanned flight, and in vivo surgery devices due to the advantages of fast response, precise control, programmable deformation, and the ease of integration with control circuits. Recently, considering the excellent physical/chemical/mechanical properties (e.g., high carrier mobility, strong mechanical strength, outstanding thermal conductivity, high specific surface area, flexibility, and transparency), graphene and its derivatives have emerged as an appealing material in developing ERAs. In this review, we have summarized the recent advances in graphene-based ERAs. Typical the working mechanisms of graphene ERAs have been introduced. Design principles and working performance of three typical types of graphene ERAs (e.g., electrostatic actuators, electrothermal actuators, and ionic actuators) have been comprehensively summarized. Besides, emerging applications of graphene ERAs, including artificial muscles, bionic robots, human-soft actuators interaction, and other smart devices, have been reviewed. At last, the current challenges and future perspectives of graphene ERAs are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...