Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Curr Res Food Sci ; 9: 100820, 2024.
Article in English | MEDLINE | ID: mdl-39263205

ABSTRACT

Ophiocordyceps sinensis is a genus of ascomycete fungi that has been widely used as a valuable tonic or medicine. However, due to over-exploitation and the destruction of natural ecosystems, the shortage of wild O. sinensis resources has led to an increase in artificially cultivated O. sinensis. To rapidly and accurately identify the molecular differences between cultivated and wild O. sinensis, this study employs surface-enhanced Raman spectroscopy (SERS) combined with machine learning algorithms to distinguish the two O. sinensis categories. Specifically, we collected SERS spectra for wild and cultivated O. sinensis and validated the metabolic profiles of SERS spectra using Ultra-Performance Liquid Chromatography coupled with Orbitrap High-Resolution Mass Spectrometry (UPLC-Orbitrap-HRMS). Subsequently, we constructed machine learning classifiers to mine potential information from the spectral data, and the spectral feature importance map is determined through an optimized algorithm. The results indicate that the representative characteristic peaks in the SERS spectra are consistent with the metabolites identified through metabolomics analysis, confirming the feasibility of the SERS method. The optimized support vector machine (SVM) model achieved the most accurate and efficient capacity in discriminating between wild and cultivated O. sinensis (accuracy = 98.95%, 5-fold cross-validation = 98.38%, time = 0.89s). The spectral feature importance map revealed subtle compositional differences between wild and cultivated O. sinensis. Taken together, these results are expected to enable the application of SERS in the quality control of O. sinensis raw materials, providing a foundation for the efficient and rapid identification of their quality and origin.

2.
Genome Biol ; 25(1): 232, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39198826

ABSTRACT

BACKGROUND: The relationship between human gut microbiota and high-altitude hypoxia acclimatization remains highly controversial. This stems primarily from uncertainties regarding both the potential temporal changes in the microbiota under such conditions and the existence of any dominant or core bacteria that may assist in host acclimatization. RESULTS: To address these issues, and to control for variables commonly present in previous studies which significantly impact the results obtained, namely genetic background, ethnicity, lifestyle, and diet, we conducted a 108-day longitudinal study on the same cohort comprising 45 healthy Han adults who traveled from lowland Chongqing, 243 masl, to high-altitude plateau Lhasa, Xizang, 3658 masl, and back. Using shotgun metagenomic profiling, we study temporal changes in gut microbiota composition at different timepoints. The results show a significant reduction in the species and functional diversity of the gut microbiota, along with a marked increase in functional redundancy. These changes are primarily driven by the overgrowth of Blautia A, a genus that is also abundant in six independent Han cohorts with long-term duration in lower hypoxia environment in Shigatse, Xizang, at 4700 masl. Further animal experiments indicate that Blautia A-fed mice exhibit enhanced intestinal health and a better acclimatization phenotype to sustained hypoxic stress. CONCLUSIONS: Our study underscores the importance of Blautia A species in the gut microbiota's rapid response to high-altitude hypoxia and its potential role in maintaining intestinal health and aiding host adaptation to extreme environments, likely via anti-inflammation and intestinal barrier protection.


Subject(s)
Acclimatization , Altitude , Gastrointestinal Microbiome , Hypoxia , Humans , Animals , Adult , Male , Hypoxia/genetics , Mice , Female , Longitudinal Studies , Altitude Sickness/microbiology , Altitude Sickness/genetics , Middle Aged
3.
Pediatr Res ; 95(1): 227-232, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37580551

ABSTRACT

BACKGROUND: children who undergo CPB operations are at an elevated risk of infection due to immunosuppression. This study aims to investigate the association between lymphopenia following CPB and early postoperative infection in children. METHODS: A retrospective analysis including 41 children under 2 years old underwent CPB. Among them, 9 subjects had an early postoperative infection, and 32 subjects were period-matched without infection. Inflammatory cytokines, serum CRP and PCT values were measured in plasma, additionally, circulating total leucocyte and lymphocyte subpopulations were counted. RESULTS: Infected subjects exhibited significantly higher levels of inflammatory cytokines, including IL-6, IL-8, IL-10, IL-1ß and TNF-α, than non-infected subjects after CPB. Additionally, lower absolute number of lymphocyte and their subpopulations CD3+ T cells, CD4+ T-helper cells and CD8+cytotoxic T-cells, were observed in infected subjects. The impairment of T-cells Immune was found to be associated with higher levels of inflammatory cytokines IL-10. The ROC demonstrated that the absolute number of CD3+ T-cells <1934/ul, CD4+ T helper cells <1203/ul and CD8+cytotoxic T-cells <327/ul were associated with early postoperative infection. CONCLUSION: Higher levels of inflammatory cytokines resulted in T-cells lymphopenia after CPB, which significantly increasing the risk of postoperative infection in infants and young children. IMPACT: Infection complications after cardiopulmonary bypass (CPB) in pediatric CHD patients are serious issues, identifing the infection from after CPB remains a challenging. CPB can release numerous inflammatory cytokines associated with T cells lymphopenia, which increases the risk of postoperative infection after surgery. Monitoring T cells lymphopenia maybe more beneficial to predict early postoperative infection than C-reactive protein and procalcitonin.


Subject(s)
Cardiopulmonary Bypass , Lymphopenia , Infant , Humans , Child , Child, Preschool , Cardiopulmonary Bypass/adverse effects , Interleukin-10 , Retrospective Studies , Cytokines , T-Lymphocytes , Lymphopenia/etiology
4.
Fish Shellfish Immunol ; 145: 109313, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38128678

ABSTRACT

The dual-specificity phosphatase (DUSP) family plays key roles in the maintenance of cellular homeostasis and apoptosis etc. In this study, the DUSP member DUSP1 of Epinephelus coioides was characterized: the length was 2371 bp including 281 bp 5' UTR, 911 bp 3' UTR, and a 1125 bp open reading frame encoding 374 amino acids. E. coioides DUSP1 has two conserved domains, a ROHD and DSPc along with a p38 MAPK phosphorylation site, localized at Ser308. E. coioides DUSP1 mRNA can be detected in all of the tissues examined, and the subcellular localization showed that DUSP1 was mainly distributed in the nucleus. Singapore grouper iridovirus (SGIV) infection could induce the differential expression of E. coioides DUSP1. Overexpression of DUSP1 could inhibit SGIV-induced cytopathic effect (CPE), the expressions of SGIV key genes, and the viral titers. Overexpression of DUSP1 could also regulate SGIV-induced apoptosis, and the expression of apoptosis-related factor caspase 3. The results would be helpful to further study the role of DUSP1 in viral infection.


Subject(s)
Bass , DNA Virus Infections , Fish Diseases , Iridovirus , Ranavirus , Animals , Bass/genetics , Iridovirus/physiology , Singapore , Cloning, Molecular , Apoptosis , Dual-Specificity Phosphatases/genetics , Fish Proteins/genetics , Phylogeny
5.
Nat Commun ; 14(1): 4375, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37587147

ABSTRACT

The beneficial effects of physical activity on brain ageing are well recognised, with exerkines, factors that are secreted into the circulation in response to exercise, emerging as likely mediators of this response. However, the source and identity of these exerkines remain unclear. Here we provide evidence that an anti-geronic exerkine is secreted by platelets. We show that platelets are activated by exercise and are required for the exercise-induced increase in hippocampal precursor cell proliferation in aged mice. We also demonstrate that increasing the systemic levels of the platelet-derived exerkine CXCL4/platelet factor 4 (PF4) ameliorates age-related regenerative and cognitive impairments in a hippocampal neurogenesis-dependent manner. Together these findings highlight the role of platelets in mediating the rejuvenating effects of exercise during physiological brain ageing.


Subject(s)
Aging , Cognitive Dysfunction , Neurogenesis , Platelet Factor 4 , Animals , Mice , Blood Platelets , Cognition , Hippocampus , Immunologic Factors
6.
J Am Chem Soc ; 145(31): 17443-17460, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37523689

ABSTRACT

The recently discovered orthorhombic liquid crystal (LC) phase of symmetry Fddd is proving to be widespread. In this work, a chiral hydroxybutyrate linkage is inserted into the molecular core of hexacatenar rodlike compounds, containing a thienylfluorenone fluorophore. In addition to more usual tools, the methods used include grazing-incidence X-ray scattering, modulated differential scanning calorimetry (DSC), flash DSC with rates up to 6000 K/s, and chiro-optical spectroscopies using Mueller matrix method, plus conformational mapping. Although pure R and S enantiomers form only a strongly chiral hexagonal columnar LC phase (Colh*), the racemic mixture forms a highly ordered Fddd phase with 4 right- and 4 left-handed twisted ribbon-like columns traversing its large unit cell. In that structure, the two enantiomers locally deracemize and self-sort into the columns of their preferred chirality. The twisted ribbons in Fddd, with a 7.54 nm pitch, consist of stacked rafts, each containing ∼2 side-by-side molecules, the successive rafts rotated by 17°. In contrast, an analogous achiral compound forms only the columnar phase. The multiple methods used gave a comprehensive picture and helped in-depth understanding not only of the Fddd phase but also of the "parachiral" Colh* in pure enantiomers with irregular helicity, whose chirality is compared to the magnetization of a paramagnet in a field. Unusual short-range ordering effects are also described. An explanation of these phenomena is proposed based on conformational analysis. Surprisingly, the isotropic-columnar transition is extremely fast, completing within ∼20 ms. A clear effect of phase on UV-vis absorption and emission is observed.

7.
J Neurosci ; 43(30): 5448-5457, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37419688

ABSTRACT

Activity-dependent changes in the number of AMPA-type glutamate receptors (AMPARs) at the synapse underpin the expression of LTP and LTD, cellular correlates of learning and memory. Post-translational ubiquitination has emerged as a key regulator of the trafficking and surface expression of AMPARs, with ubiquitination of the GluA1 subunit at Lys-868 controlling the post-endocytic sorting of the receptors into the late endosome for degradation, thereby regulating their stability at synapses. However, the physiological significance of GluA1 ubiquitination remains unknown. In this study, we generated mice with a knock-in mutation in the major GluA1 ubiquitination site (K868R) to investigate the role of GluA1 ubiquitination in synaptic plasticity, learning, and memory. Our results reveal that these male mice have normal basal synaptic transmission but exhibit enhanced LTP and deficits in LTD. They also display deficits in short-term spatial memory and cognitive flexibility. These findings underscore the critical roles of GluA1 ubiquitination in bidirectional synaptic plasticity and cognition in male mice.SIGNIFICANCE STATEMENT Subcellular targeting and membrane trafficking determine the precise number of AMPA-type glutamate receptors at synapses, processes that are essential for synaptic plasticity, learning, and memory. Post-translational ubiquitination of the GluA1 subunit marks AMPARs for degradation, but its functional role in vivo remains unknown. Here we demonstrate that the GluA1 ubiquitin-deficient mice exhibit an altered threshold for synaptic plasticity accompanied by deficits in short-term memory and cognitive flexibility. Our findings suggest that activity-dependent ubiquitination of GluA1 fine-tunes the optimal number of synaptic AMPARs required for bidirectional synaptic plasticity and cognition in male mice. Given that increases in amyloid-ß cause excessive ubiquitination of GluA1, inhibiting that GluA1 ubiquitination may have the potential to ameliorate amyloid-ß-induced synaptic depression in Alzheimer's disease.


Subject(s)
Neuronal Plasticity , Receptors, AMPA , Mice , Male , Animals , Receptors, AMPA/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism , Neuronal Plasticity/physiology , Synapses/physiology , Receptors, Glutamate/metabolism , Ubiquitination , Cognition , Hippocampus/metabolism
8.
J Med Virol ; 95(7): e28969, 2023 07.
Article in English | MEDLINE | ID: mdl-37485644

ABSTRACT

Despite the extensive use of effective vaccines and antiviral drugs, chronic hepatitis B virus (HBV) infection continues to pose a serious threat to global public health. Therapies with novel mechanisms of action against HBV are being explored for achieving a functional cure. In this study, five murine models of HBV replication were used to investigate the inhibitory effect of RNA binding motif protein 24 (RBM24) on HBV replication. The findings revealed that RBM24 serves as a host restriction factor and suppresses HBV replication in vivo. The transient overexpression of RBM24 in hydrodynamics-based mouse models of HBV replication driven by the CMV or HBV promoters suppressed HBV replication. Additionally, the ectopic expression of RBM24 decreased viral accumulation and the levels of HBV covalently closed circular DNA (cccDNA) in an rcccDNA mouse model. The liver-directed transduction of adeno-associated viruses (AAV)-RBM24 mediated the stable hepatic expression of RBM24 in pAAV-HBV1.2 and HBV/tg mouse models, and markedly reduced the levels of HBV cccDNA and other viral indicators. Altogether, these findings revealed that RBM24 inhibits the replication of HBV in vivo, and RBM24 may be a potential therapeutic target for combating HBV infections.


Subject(s)
Hepatitis B, Chronic , Hepatitis B , Mice , Animals , Hepatitis B virus , Virus Replication , DNA, Circular , RNA-Binding Motifs , DNA, Viral/genetics , DNA, Viral/metabolism
9.
Neural Netw ; 165: 19-30, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37263089

ABSTRACT

Few-shot learning aims to train a model with a limited number of base class samples to classify the novel class samples. However, to attain generalization with a limited number of samples is not a trivial task. This paper proposed a novel few-shot learning approach named Self-supervised Contrastive Learning (SCL) that enriched the model representation with multiple self-supervision objectives. Given the base class samples, the model is trained with the base class loss. Subsequently, contrastive-based self-supervision is introduced to minimize the distance between each training sample with their augmented variants to improve the sample discrimination. To recognize the distant sample, rotation-based self-supervision is proposed to enable the model to learn to recognize the rotation degree of the samples for better sample diversity. The multitask environment is introduced where each training sample is assigned with two class labels: base class label and rotation class label. Complex augmentation is put forth to help the model learn a deeper understanding of the object. The image structure of the training samples are augmented independent of the base class information. The proposed SCL is trained to minimize the base class loss, contrastive distance loss, and rotation class loss simultaneously to learn the generic features and improve the novel class performance. With the multiple self-supervision objectives, the proposed SCL outperforms state-of-the-art few-shot approaches on few-shot image classification benchmark datasets.


Subject(s)
Generalization, Psychological , Learning , Benchmarking , Rotation
10.
J Med Virol ; 94(11): 5492-5506, 2022 11.
Article in English | MEDLINE | ID: mdl-35879101

ABSTRACT

During the long coevolution of human cytomegalovirus (HCMV) and humans, the host has formed a defense system of multiple layers to eradicate the invader, and the virus has developed various strategies to evade host surveillance programs. The intrinsic immunity primarily orchestrated by promyelocytic leukemia (PML) nuclear bodies (PML-NBs) represents the first line of defense against HCMV infection. Here, we demonstrate that microrchidia family CW-type zinc finger 3 (MORC3), a PML-NBs component, is a restriction factor targeting HCMV infection. We show that depletion of MORC3 through knockdown by RNA interference or knockout by CRISPR-Cas9 augmented immediate-early protein 1 (IE1) gene expression and subsequent viral replication, and overexpressing MORC3 inhibited HCMV replication by suppressing IE1 gene expression. To relief the restriction, HCMV induces transient reduction of MORC3 protein level via the ubiquitin-proteasome pathway during the immediate-early to early stage. However, MORC3 transcription is upregulated, and the protein level recovers in the late stages. Further analyses with temporal-controlled MORC3 expression and the major immediate-early promoter (MIEP)-based reporters show that MORC3 suppresses MIEP activity and consequent IE1 expression with the assistance of PML. Taken together, our data reveal that HCMV enforces temporary loss of MORC3 to evade its repression against the initiation of immediate-early gene expression.


Subject(s)
Cytomegalovirus Infections , Immediate-Early Proteins , Adenosine Triphosphatases/metabolism , Cytomegalovirus/genetics , DNA-Binding Proteins/metabolism , Humans , Immediate-Early Proteins/genetics , Immediate-Early Proteins/metabolism , Promyelocytic Leukemia Protein/genetics , Promyelocytic Leukemia Protein/metabolism , Virus Replication
11.
Cancers (Basel) ; 14(10)2022 May 13.
Article in English | MEDLINE | ID: mdl-35626014

ABSTRACT

Melanoma incidence rates are high among individuals with fair skin and multiple naevi. Established prognostic factors are tumour specific, and less is known about prognostic host factors. A total of 556 stage I to stage IV melanoma patients from Germany with phenotypic and disease-specific data were analysed; 64 of these patients died of melanoma after a median follow-up time of 8 years. Germline DNA was assessed by the HumanCoreExome BeadChip and data of 356,384 common polymorphisms distributed over all 23 chromosomes were used for a genome-wide analysis. A suggestive genome-wide significant association of the intronic allele rs7551288*A with diminished melanoma-specific survival was detected (p = 2 × 10-6). The frequency of rs7551288*A was 0.43 and was not associated with melanoma risk, hair and eye colour, tanning and total naevus count. Cox regression multivariate analyses revealed a 5.31-fold increased risk of melanoma-specific death for patients with the rs7551288 A/A genotype, independent of tumour thickness, ulceration and stage of disease at diagnoses. The variant rs7551288 belongs to the DHCR24 gene, which encodes Seladin-1, an enzyme involved in the biosynthesis of cholesterol. Further investigations are needed to confirm this genetic variant as a novel prognostic biomarker and to explore whether specific treatment strategies for melanoma patients might be derived from it.

12.
Eur J Pharmacol ; 920: 174846, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35202676

ABSTRACT

Oxidative stress plays a crucial role in the pathophysiology of diastolic dysfunction associated with diabetic cardiomyopathy. Novel oral edaravone (OED) alleviates oxidative stress by scavenging free radicals and may be suitable for the treatment of chronic diseases such as diabetic cardiomyopathy. Oral administration of OED to type 2 diabetic rats (induced by high-sugar/high-fat diet and intraperitoneal injection of streptozotocin) for 4 w decreased malondialdehyde and increased superoxide dismutase. Moreover, it significantly improved ratios of early to late diastolic peak velocity, myocardium hypertrophy accompanied by decreased cross-sectional areas of cardiomyocytes, the proportion of apoptotic cells, collagen volume fractions, and deposition of collagen I/III. In H9c2 cells, OED reduced reactive oxygen species, cell surface area, and numbers of terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling-positive cells induced by glucolipotoxicity. OED remarkably upregulated expression of the nuclear factor E2-related factor (Nrf2) signaling pathway both in vivo and in vitro. In addition, OED promoted Nrf2 nuclear translocation and upregulated nicotinamide adenine dinucleotide phosphate quinone oxidoreductase and heme oxygenase. Silencing of Nrf2 abolished the protective effect of OED in H9c2 cells. Our findings demonstrate that OED has the therapeutic potential to ameliorate diastolic dysfunction associated with diabetic cardiomyopathy. Its effect was mainly achieved by attenuating hyperglycemia and hyperlipidemia-induced cardiomyocyte hypertrophy, apoptosis, and fibrosis by activating the Nrf2 signaling pathway.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Animals , Apoptosis , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetic Cardiomyopathies/drug therapy , Edaravone/pharmacology , Edaravone/therapeutic use , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Rats , Signal Transduction
13.
Ann Transl Med ; 10(23): 1268, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36618805

ABSTRACT

Background: Pigment disorder dermatoses are common diseases with complex mechanisms. There are various methods for the clinical treatment of pigmentation diseases, but these have a poor curative effect and many adverse reactions. Currently, looking for safe and effective whitening agents is a popular research topic. Stromal vascular fractions (SVFs) are a compound cell component of adipose-derived stem cells (ADSCs) that can promote tissue regeneration, healing, and vascularization. The purpose of this experiment was to investigate the inhibitory effect of SVFs on pigmentation in guinea pigs. Methods: After guinea pig subcutaneous fat was digested and centrifuged, SVFs were isolated and quantified. SVF was injected into the pigmentation area of the prepared guinea pig pigmentation model. The amount of inducible nitric oxide synthase (iNOS) was determined using immunohistochemical analysis, histopathological staining, and the Fontana-Masson (F-M) method for measuring melanin formation. Results: The skin of the guinea pigs obtained stable and homogenous coloration following three treatments with narrow-band ultraviolet B (NB-UVB). Hematoxylin-eosin (HE) staining revealed that compared to the control group, the cuticle, granular layer, and spinous layer were thicker and the number of epidermal melanocytes and melanin granules increased. While the quantity of pigment granules in the treated group dramatically decreased, it did not significantly change in the blank control group. F-M staining revealed that melanin granules greatly expanded following ultraviolet irradiation and were continuously distributed in basal cells and spinous layers. The entire epidermis was evenly covered in melanin granules. The level of melanin dramatically decreased following therapy. According to immunohistochemical labeling, epidermal cells' cytoplasm and membranes are where iNOS is primarily found. In the epidermis of the irradiated group, iNOS expression was much higher than in the control group, and following treatment, it decreased in the experimental group. Conclusions: SVFs have a reliable treatment effect on ultraviolet B (UVB)-induced pigmentation in guinea pig skin. SVFs can significantly inhibit pigmentation, effectively shorten the fading time of pigmentation, and play a role in skin whitening, providing a new breakthrough for the treatment of pigmentation diseases.

14.
Cell Rep ; 36(1): 109338, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34233182

ABSTRACT

NMDA receptor (NMDAR)-dependent Ca2+ influx underpins multiple forms of synaptic plasticity. Most synaptic NMDAR currents in the adult forebrain are mediated by GluN2A-containing receptors, which are rapidly inserted into synapses during long-term potentiation (LTP); however, the underlying molecular mechanisms remain poorly understood. In this study, we show that GluN2A is phosphorylated at Ser-1459 by Ca2+/calmodulin-dependent kinase IIα (CaMKIIα) in response to glycine stimulation that mimics LTP in primary neurons. Phosphorylation of Ser-1459 promotes GluN2A interaction with the sorting nexin 27 (SNX27)-retromer complex, thereby enhancing the endosomal recycling of NMDARs. Loss of SNX27 or CaMKIIα function blocks the glycine-induced increase in GluN2A-NMDARs on the neuronal membrane. Interestingly, mutations of Ser-1459, including the rare S1459G human epilepsy variant, prolong the decay times of NMDAR-mediated synaptic currents in heterosynapses by increasing the duration of channel opening. These findings not only identify a critical role of Ser-1459 phosphorylation in regulating the function of NMDARs, but they also explain how the S1459G variant dysregulates NMDAR function.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Ion Channel Gating , Protein Subunits/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Amino Acid Sequence , Animals , Female , Glycine , HEK293 Cells , Humans , Models, Biological , Mutation/genetics , Nerve Tissue Proteins , Phosphorylation , Phosphoserine/metabolism , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/chemistry , Receptors, N-Methyl-D-Aspartate/genetics , Synapses/metabolism
15.
Pestic Biochem Physiol ; 174: 104811, 2021 May.
Article in English | MEDLINE | ID: mdl-33838713

ABSTRACT

Isoxazole, nicotinic acid and benzoic acid are important components in many natural products and useful synthons to build macrostructures having valuable biological activities. In continuation of our effort to discover 4-hydroxyphenylpyruvate dioxygenase (HPPD, EC 1.13.11.27) inhibitors and search for active fragments from natural products, a series of substituted aryl-formyl piperidinone derivatives with natural product fragments was rationally designed, synthesized and tested for their herbicidal activity. Compound I-9 was considered the most effective candidate with an IC50 value of 0.260 µM. The molecular docking results showed that the triketone group of compound I-9 forms a bidentate complex with a metal ion, and the benzene ring interacted with Phe424 and Phe381 via π-π stacking, which was similar to the mechanisms of mesotrione. The present work indicates that compound I-9 may serve as a potential lead compound for further development of green HPPD inhibitors.


Subject(s)
Herbicides , Enzyme Inhibitors/pharmacology , Herbicides/pharmacology , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship
16.
Cell Rep ; 33(4): 108312, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33113376

ABSTRACT

Efficient retrieval of synaptic vesicles (SVs) is crucial to sustain synaptic transmission. Protein interacting with C-kinase 1 (PICK1) is a unique PDZ (postsynaptic density-95/disc-large/zona-occluden-1)- and BAR (Bin-Amphiphysin-Rvs )-domain-containing protein that regulates the trafficking of postsynaptic glutamate receptors. It is also expressed in presynaptic terminals and is associated with the SVs; however, its role in regulating SV recycling remains unknown. Here, we show that PICK1 loss of function selectively slows the kinetics of SV endocytosis in primary hippocampal neurons during high-frequency stimulation. PICK1 knockdown also causes surface stranding and mislocalization of major SV proteins, synaptophysin and vGlut1, along the axon. A functional PDZ domain of PICK1 and its interaction with the core endocytic adaptor protein (AP)-2 are required for the proper targeting and clustering of synaptophysin. Furthermore, PICK1 and its interaction with AP-2 are required for efficient SV endocytosis and sustained glutamate release. Our findings, therefore, identify PICK1 as a key regulator of presynaptic vesicle recycling in central synapses.


Subject(s)
Carrier Proteins/metabolism , Nuclear Proteins/metabolism , Animals , Humans , Synaptic Vesicles/metabolism
17.
Int J Mol Sci ; 21(15)2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32756361

ABSTRACT

4-Hydroxyphenylpyruvate dioxygenase (HPPD) is an iron-dependent non-heme oxygenase involved in the catabolic pathway of tyrosine, which is an important enzyme in the transformation of 4-hydroxyphenylpyruvic acid to homogentisic acid, and thus being considered as herbicide target. Within this study, a set of multiple structure-based pharmacophore models for HPPD inhibitors were developed. The ZINC and natural product database were virtually screened, and 29 compounds were obtained. The binding mode of HPPD and its inhibitors obtained through molecular docking study showed that the residues of Phe424, Phe381, His308, His226, Gln307 and Glu394 were crucial for activity. Molecular-mechanics-generalized born surface area (MM/GBSA) results showed that the coulomb force, lipophilic and van der Waals (vdW) interactions made major contributions to the binding affinity. These efforts will greatly contribute to design novel and effective HPPD inhibitory herbicides.


Subject(s)
4-Hydroxyphenylpyruvate Dioxygenase/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Molecular Structure , User-Computer Interface , 4-Hydroxyphenylpyruvate Dioxygenase/chemistry , Binding Sites , Enzyme Inhibitors/isolation & purification , Enzyme Inhibitors/pharmacology , Herbicides/chemistry , Herbicides/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Quantitative Structure-Activity Relationship
18.
Eur J Pharm Sci ; 154: 105504, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32750420

ABSTRACT

4-Hydroxyphenylpyruvate dioxygenase (HPPD, EC 1.13.11.27) is the second enzyme of the tyrosine catabolic pathway. Its physiological function is to catalyze the conversion of 4-hydroxyphenylpyruvic acid to homogentisic acid, which displays different physiological effects in mammals and plants. Insights on the selective inhibition of human HPPD (hHPPD) by triketone inhibitors were furnished by the integrated application of molecular simulation and biological testing. The binding free energy of hHPPD and inhibitors was obtained through molecular dynamics (MD) simulations, and the result was in agreement with the inhibition experiment in vitro. The binding free energy contribution demonstrated that the formation of hHPPD-inhibitor complexes was mainly driven by van der Waals energy. Ser226, Asn241, Gln265, Phe336, Phe359 and Phe364 made great contributions to binding affinities of all the systems. Among the residues involved in the interaction between nitisinone (NTBC) and hHPPD, Tyr221 and Leu224, whose mutation into Ala caused significant decrease of NTBC binding ability, were two key residues in determining the selective binding affinity of inhibitor and hHPPD. This work provides valuable theoretical basis for rational design of highly selective inhibitors targeting hHPPD.


Subject(s)
4-Hydroxyphenylpyruvate Dioxygenase , Dioxygenases , 4-Hydroxyphenylpyruvate Dioxygenase/metabolism , 4-Hydroxyphenylpyruvate Dioxygenase/pharmacokinetics , Animals , Enzyme Inhibitors/pharmacology , Humans , Molecular Dynamics Simulation
19.
Future Med Chem ; 12(9): 795-811, 2020 05.
Article in English | MEDLINE | ID: mdl-32223563

ABSTRACT

Aim: 4-Hydroxyphenylpyruvate dioxygenase (HPPD) has attracted increasing attention as an important target against tyrosinemia type I. This paper aimed to explore the structure-activity relationship of HPPD inhibitors with pyrazole scaffolds and to design novel HPPD inhibitors. Methodology & results: The best 3D-quantitative structure-activity relationships model was established by two different strategies based on 40 pyrazole scaffold-based analogs. Screening of molecular fragments by topomer technology, combined with molecular docking, 14 structures were identified for potential human HPPD inhibitory activity. Molecular dynamics results demonstrated that all the compounds obtained bound to the enzyme and possessed a satisfactory binding free energy. Conclusion: The quantitative structure-activity relationship of HPPD inhibitors of pyrazole scaffolds was clarified and 14 original structures with potential human HPPD inhibitory activity were obtained.


Subject(s)
4-Hydroxyphenylpyruvate Dioxygenase/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Pyrazoles/pharmacology , Quantitative Structure-Activity Relationship , 4-Hydroxyphenylpyruvate Dioxygenase/metabolism , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Models, Molecular , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/chemistry
20.
J Agric Food Chem ; 68(11): 3403-3414, 2020 Mar 18.
Article in English | MEDLINE | ID: mdl-32101688

ABSTRACT

Herbicide safeners selectively protect crops from herbicide damage without reducing the herbicidal efficiency on target weed species. The title compounds were designed by the intermediate derivatization approach and fragment splicing to exploit novel potential safeners. A total of 31 novel diazabicyclo derivatives were synthesized by the microwave-assistant method using isoxazole-4-carbonyl chloride and diazabicyclo derivatives. All synthetic compounds were confirmed by infrared, 1H and 13C nuclear magnetic resonance, and high-resolution mass spectrometry. The bioassay results demonstrated that most of the title compounds could reduce the nicosulfuron phytotoxicity on maize. The glutathione S-transferase (GST) activity in vivo was assayed, and compound 4(S15) revealed an inspiring safener activity comparable to commercialized safeners isoxadifen-ethyl and BAS-145138. The molecular docking model exhibited that the competition at the active sites of target enzymes between compound 4(S15) and nicosulfuron was investigated with respect to herbicide detoxification. The current work not only provided a powerful supplement to the intermediate derivatization approach and fragment splicing in design pesticide bioactive molecules but also assisted safener development and optimization.


Subject(s)
Herbicides , Herbicides/pharmacology , Inactivation, Metabolic , Isoxazoles , Molecular Docking Simulation , Zea mays/genetics
SELECTION OF CITATIONS
SEARCH DETAIL