Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Malar J ; 15: 17, 2016 Jan 08.
Article in English | MEDLINE | ID: mdl-26747132

ABSTRACT

BACKGROUND: In addition to evidence for a protective role of antibodies to the malaria blood stage antigen merozoite surface protein 1 (MSP1), MSP1 antibodies are also considered as a marker of past malaria exposure in sero-epidemiological studies. METHODS: In order to better assess the potential use of MSP1 serology in malaria chemoprophylaxis trials in endemic areas, an analysis for the prevalence of antibodies to both Plasmodium falciparum and Plasmodium vivax MSP142 in healthy Cambodian adults was conducted at two sites as part of an active, observational cohort evaluating the efficacy of dihydroartemisinin-piperaquine (DP) for uncomplicated malaria (ClinicalTrials.gov identifier NCT01280162). RESULTS: Rates of baseline sero-positivity were high (59 and 73% for PfMSP142 and PvMSP142, respectively), and titers higher in those who lived in a higher transmission area, although there was little correlation in titers between the two species. Those volunteers who subsequently went on to develop malaria had higher baseline MSP142 titers than those who did not for both species. Titers to both antigens remained largely stable over the course of the 4-6 month study, except in those infected with P. falciparum who had multiple recurrences. CONCLUSION: These findings illuminate the difficulties in using MSP142 serology as either a screening criterion and/or biomarker of exposure in chemoprophylaxis studies. Further work remains to identify useful markers of malarial infection and/or immunity.


Subject(s)
Antibodies, Protozoan/immunology , Malaria, Falciparum/immunology , Merozoite Surface Protein 1/immunology , Adult , Antigens, Protozoan/immunology , Artemisinins/therapeutic use , Enzyme-Linked Immunosorbent Assay , Female , Humans , Malaria/drug therapy , Malaria/immunology , Malaria, Falciparum/drug therapy , Male , Plasmodium falciparum/immunology , Plasmodium falciparum/pathogenicity , Plasmodium vivax/immunology , Plasmodium vivax/pathogenicity , Young Adult
2.
J Immunol ; 178(2): 1151-7, 2007 Jan 15.
Article in English | MEDLINE | ID: mdl-17202379

ABSTRACT

Human gingival fibroblasts (HGFs), a predominant cell type in tooth-supporting structure, are presently recognized for their active role in the innate immune response. They produce a variety of inflammatory cytokines in response to microbial components such as LPS from the key periodontal pathogen, Porphyromonas gingivalis. In this study, we demonstrated that HGFs expressed mRNA of TLRs 1, 2, 3, 4, 5, 6, and 9, but not TLRs 7, 8, and 10. Stimulation of HGFs with highly purified TLR2 ligand (P. gingivalis LPS), TLR3 ligand (poly(I:C)), TLR4 ligand (Escherichia coli LPS), and TLR5 ligand (Salmonella typhimurium flagellin) led to expression of IL-8 and IDO. A potent TLR 9 ligand, CpG oligodeoxynucleotide 2006 had no effect, although HGFs showed a detectable TLR9 mRNA expression. No significant enhancement on IL-8 or IDO expression was observed when HGFs were stimulated with various combinations of TLR ligands. Surprisingly, the TLR9 ligand CpG oligodeoxynucleotide 2006 was able to specifically inhibit poly(I:C)-induced IL-8 and IDO expression. TNF-alpha enhanced TLR ligand-induced IL-8 production in HGFs, whereas IFN-gamma enhanced TLR ligand-induced IDO expression. HGF production of IDO in response to P. gingivalis LPS, IFN-gamma, or the two in combination inhibited T cell proliferation in MLRs. The observed T cell inhibition could be reversed by addition of either 1-methyl-dl-tryptophan or l-tryptophan. Our results suggest an important role of HGFs not only in orchestrating the innate immune response, but also in dampening potentially harmful hyperactive inflammation in periodontal tissue.


Subject(s)
Gene Expression Regulation , Gingiva/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Interleukin-8/metabolism , Toll-Like Receptors/metabolism , Cells, Cultured , Cytokines/pharmacology , Fibroblasts , Gene Expression Regulation/drug effects , Humans , Kinetics , Ligands , Porphyromonas gingivalis/metabolism , RNA, Messenger/genetics , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Toll-Like Receptors/genetics
3.
Asian Pac J Allergy Immunol ; 24(4): 223-8, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17348245

ABSTRACT

Interaction between different bacterial plaque pathogens and dendritic cells may induce different types of T helper (Th) cell response, which is critical in the pathogenesis of periodontitis. In this study we investigated the effects of lipopolysaccharide (LPS) from Porphyromonas gingivalis and Actinobacillus actinomycetemcomitans on human monocyte-derived dendritic cells (Mo-DCs) with respect to co-stimulatory molecule expression, cytokine production and Th cell differentiation. Unlike Escherichia coli and A. actinomycetemcomitans LPS, P. gingivalis LPS induced only low levels of CD40, CD80, HLA-DR and CD83 expression on Mo-DCs. LPS from both bacteria induced considerably lower TNF-alpha and IL-10 than did E. coli LPS. LPS from all three bacteria induced only negligible IL-12 production. In a human mixed-leukocyte reaction, and in an ovalbumin-specific T cell response assay in mice, both types of LPS suppressed IFN-gamma production. In conclusion, stimulation by P. gingivalis LPS and A. actinomycetemcomitans LPS appears to bias Mo-DCs towards Th2 production.


Subject(s)
Aggregatibacter actinomycetemcomitans/immunology , Dendritic Cells/immunology , Lipopolysaccharides/immunology , Models, Immunological , Porphyromonas gingivalis/immunology , Th2 Cells/immunology , Aggregatibacter actinomycetemcomitans/chemistry , Animals , Antigens, Differentiation/immunology , Cell Differentiation/drug effects , Cell Differentiation/immunology , Cells, Cultured , Coculture Techniques , Cytokines/immunology , Dendritic Cells/cytology , Escherichia coli/chemistry , Escherichia coli/immunology , Humans , Lipopolysaccharides/chemistry , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred BALB C , Porphyromonas gingivalis/chemistry , Th2 Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...