Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanobiotechnology ; 22(1): 347, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898529

ABSTRACT

BACKGROUND: Silica nanoparticles (SNPs) have immense potential in biomedical research, particularly in drug delivery and imaging applications, owing to their stability and minimal interactions with biological entities such as tissues or cells. RESULTS: With synthesized and characterized cyanine-dye-doped fluorescent SNPs (CSNPs) using cyanine 3.5, 5.5, and 7 (Cy3.5, Cy5.5, and Cy7). Through systematic analysis, we discerned variations in the surface charge and fluorescence properties of the nanoparticles contingent on the encapsulated dye-(3-aminopropyl)triethoxysilane conjugate, while their size and shape remained constant. The fluorescence emission spectra exhibited a redshift correlated with increasing dye concentration, which was attributed to cascade energy transfer and self-quenching effects. Additionally, the fluorescence signal intensity showed a linear relationship with the particle concentration, particularly at lower dye equivalents, indicating a robust performance suitable for imaging applications. In vitro assessments revealed negligible cytotoxicity and efficient cellular uptake of the nanoparticles, enabling long-term tracking and imaging. Validation through in vivo imaging in mice underscored the versatility and efficacy of CSNPs, showing single-switching imaging capabilities and linear signal enhancement within subcutaneous tissue environment. CONCLUSIONS: This study provides valuable insights for designing fluorescence imaging and optimizing nanoparticle-based applications in biomedical research, with potential implications for targeted drug delivery and in vivo imaging of tissue structures and organs.


Subject(s)
Carbocyanines , Fluorescent Dyes , Nanoparticles , Optical Imaging , Silicon Dioxide , Silicon Dioxide/chemistry , Nanoparticles/chemistry , Carbocyanines/chemistry , Animals , Mice , Optical Imaging/methods , Fluorescent Dyes/chemistry , Humans , Silanes/chemistry , Particle Size , Propylamines , Benzothiazoles
2.
Front Mol Biosci ; 10: 1148521, 2023.
Article in English | MEDLINE | ID: mdl-37187893

ABSTRACT

Interleukin-6 (IL-6) is a pleiotropic cytokine that plays both anti- and pro-inflammatory roles. Due to the restricted expression of membrane IL-6 receptor (IL-6R), most pro-inflammatory functions of IL-6 are attributed to its association with soluble IL-6R (sIL-6R). Neuronal growth regulator 1 (NEGR1) is a brain-enriched membrane protein that has recently been recognized as a risk factor for many human diseases including obesity, depression, and autism. In the present study, we report that the expression levels of IL-6 and IL-6R, as well as the phosphorylation of signal transducer and activator of transcription (STAT) 3, were significantly elevated in white adipose tissues of Negr1 knockout mice. Elevated levels of circulating IL-6 and sIL-6R have also been observed in Negr1 -/- mice. Furthermore, NEGR1 interacted with IL-6R, which was supported by subcellular fractionation and an in situ proximity ligation assay. Importantly, NEGR1 expression attenuated the phosphorylation of STAT3 by sIL-6R, suggesting that NEGR1 negatively regulates IL-6 trans-signaling. Taken together, we propose that NEGR1 may play a regulatory role in IL-6 signaling by interacting with IL-6R, which may contribute to a molecular link underlying obesity, inflammation, and the depression cycle.

3.
J Lipid Res ; 63(6): 100221, 2022 06.
Article in English | MEDLINE | ID: mdl-35526561

ABSTRACT

Neuronal growth regulator 1 (NEGR1) is a glycosylphosphatidylinositol-anchored membrane protein associated with several human pathologies, including obesity, depression, and autism. Recently, significantly enlarged white adipose tissue, hepatic lipid accumulation, and decreased muscle capacity were reported in Negr1-deficient mice. However, the mechanism behind these phenotypes was not clear. In the present study, we found NEGR1 to interact with cluster of differentiation 36 (CD36), the major fatty acid translocase in the plasma membrane. Binding assays with a soluble form of NEGR1 and in situ proximal ligation assays indicated that NEGR1-CD36 interaction occurs at the outer leaflet of the cell membrane. Furthermore, we show that NEGR1 overexpression induced CD36 protein destabilization in vitro. Both mRNA and protein levels of CD36 were significantly elevated in the white adipose tissue and liver tissues of Negr1-/- mice. Accordingly, fatty acid uptake rate increased in NEGR1-deficient primary adipocytes. Finally, we demonstrated that Negr1-/- mouse embryonic fibroblasts showed elevated reactive oxygen species levels and decreased adenosine monophosphate-activated protein kinase activation compared with control mouse embryonic fibroblasts. Based on these results, we propose that NEGR1 regulates cellular fat content by controlling the expression of CD36.


Subject(s)
Adipocytes , CD36 Antigens , Cell Adhesion Molecules, Neuronal , Adipocytes/metabolism , Animals , CD36 Antigens/genetics , CD36 Antigens/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Cell Membrane/metabolism , Fatty Acids/metabolism , Fibroblasts/metabolism , Mice
4.
Genes Genomics ; 43(4): 351-359, 2021 04.
Article in English | MEDLINE | ID: mdl-33555501

ABSTRACT

BACKGROUND: The renal cell carcinoma (RCC) incidences are continuously increasing, however, their proper characterization remains difficult. Mammalian kidneys require large amounts of energy, and monocarboxylate transporter (MCT) gene family is responsible for the transport of monocarboxylic compounds across plasma membranes. OBJECTIVE: A total of 14 MCT members have been identified in humans, which show highly distinct substrate affinities and tissue distributions. To understand the yet-uncharacterized renal cancer-specific role of MCTs, we identified MCT members that are differentially regulated during the renal tumor progression. METHODS: We examined the expression level of MCT members in renal cell tumors and their relationship with survival rate of patients using a public database. Quantitative RT-PCR and northern blotting were performed to validate the expression of MCTs. Anti-MCT9 antiserum was raised in rabbit and used to examine MCT9 expression in normal and tumor tissue arrays. Effect of MCT9 overexpression on cell proliferation was measured using renal cancer cell lines. RESULTS: MCT9 was found to be abundantly and exclusively expressed in human kidney cells, and was highly downregulated in renal cancers. Kaplan-Meier plotter analysis revealed an increased survival rate of MCT9 high-expressing RCC patients. MCT9 proteins were detected in normal kidney tissue sections and their overexpression clearly attenuated renal cell proliferation. CONCLUSIONS: MCT9 was identified as a novel highly downregulated gene in renal cell cancer, and its overexpression clearly attenuated RCC cell proliferation. Thus, functional analysis of MCT9 may help in deciphering a yet-undiscovered kidney-specific energy metabolism during renal tumor progression.


Subject(s)
Carcinoma, Renal Cell/metabolism , Kidney Neoplasms/metabolism , Monocarboxylic Acid Transporters/metabolism , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Cell Proliferation , Down-Regulation , Gene Expression Regulation, Neoplastic , Humans , Kidney/metabolism , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Monocarboxylic Acid Transporters/genetics
5.
BMB Rep ; 54(3): 164-169, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32958118

ABSTRACT

Neuronal growth regulator 1 (NEGR1) is a GPI-anchored membrane protein that is involved in neural cell adhesion and communication. Multiple genome wide association studies have found that NEGR1 is a generic risk factor for multiple human diseases, including obesity, autism, and depression. Recently, we reported that Negr1-/- mice showed a highly increased fat mass and affective behavior. In the present study, we identified Na/K-ATPase, beta1-subunit (ATP1B1) as an NEGR1 binding partner by yeast two-hybrid screening. NEGR1 and ATP1B1 were found to form a relatively stable complex in cells, at least partially co-localizing in membrane lipid rafts. We found that NEGR1 binds with ATP1B1 at its C-terminus, away from the binding site for the alpha subunit, and may contribute to intercellular interactions. Collectively, we report ATP1B1 as a novel NEGR1-interacting protein, which may help deciphering molecular networks underlying NEGR1-associated human diseases. [BMB Reports 2021; 54(3): 164-169].


Subject(s)
Cell Adhesion Molecules, Neuronal/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Cell Communication , Cells, Cultured , GPI-Linked Proteins/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...