Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 11(50): 47025-47036, 2019 Dec 18.
Article in English | MEDLINE | ID: mdl-31741376

ABSTRACT

Effects of lanthanum (La) loading on the structural, optical, and electrical properties of tin monoxide (SnO) films were examined as a p-type semiconducting layer. La loading up to 1.9 atom % caused the texturing of the tetragonal SnO phase with a preferential orientation of (101), which was accompanied by the smoother surface morphology. Simultaneously, the incorporated La cation suppressed the formation of n-type SnO2 in the La-doped SnO film and widened its optical band gap. These variations allowed the 1.9 atom % La-loaded SnO film to have a high hole mobility and carrier density, compared with the La-free control SnO film. The superior semiconducting property was reflected in the p-type thin-film transistor (TFT). The control SnO TFTs exhibited the field-effect mobility (µSAT) and ION/OFF ratio of 0.29 cm2 V-1 s-1 and 5.4 × 102, respectively. Enhancement in the µSAT value and ION/OFF ratio was observed for the TFTs with the 1.9 atom % La-loaded SnO channel layer: they were improved to 1.2 cm2 V-1 s-1 and 7.3 × 103, respectively. The reason for this superior performance was discussed on the basis of smoother morphology, suppression of disproportionation conversion from Sn2+ to Sn + Sn4+, and reduced gap-state density.

2.
ACS Appl Mater Interfaces ; 11(43): 40214-40221, 2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31577123

ABSTRACT

This paper reports a new p-type tin oxyselenide (SnSeO), which was designed with the concept that the valence band edge from O 2p orbitals in the majority of metal oxides becomes delocalized by hybridizing Se 4p and Sn 5s orbitals. As the Se loading increased, the SnSeO film structures were transformed from tetragonal SnO to orthorhombic SnSe, which was accompanied by an increase in the amorphous phase portion and smooth morphologies. The SnSe0.56O0.44 film annealed at 300 °C exhibited the highest Hall mobility (µHall), 15.0 cm2 (V s)-1, and hole carrier density (nh), 1.2 × 1017 cm-3. The remarkable electrical performance was explained by the low hole effective mass, which was calculated by a first principle calculation. Indeed, the fabricated field-effect transistor (FET) with a p-channel SnSe0.56O0.44 film showed the high field-effect mobility of 5.9 cm2 (V s)-1 and an ION/OFF ratio of 3 × 102. This work demonstrates that anion alloy-based hybridization provides a facile route to the realization of a high-performance p-channel FET and complementary devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...