Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chim Acta ; 1301: 342465, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38553123

ABSTRACT

BACKGROUND: Most biological molecular complexes consist of multiple functional domains, yet rationally constructing such multifunctional complexes is challenging. Aptamers, the nucleic acid-based functional molecules, can perform multiple tasks including target recognition, conformational changes, and enzymatic activities, while being chemically synthesizable and tunable, and thus provide a basis for engineering enhanced functionalities through combination of multiple units. However, the conventional approach of simply combining aptamer units in a serial manner is susceptible to undesired crosstalk or interference between the aptamer units and to false interactions with non-target molecules; besides, the approach would require additional mechanisms to separate the units if they are desired to function independently. It is clearly a challenge to develop multi-aptamer complexes that preserve independent functions of each unit while avoiding undesired interference and non-specific interactions. RESULTS: By directly in vitro selecting a 'trans' aptamer complex, we demonstrate that one aptamer unit ('utility module') can remain hidden or 'inactive' until a target analyte triggers the other unit ('sensing module') and separates the two aptamers. Since the operation of the utility module occurs free from the sensing module, unnecessary crosstalk between the two units can be avoided. Because the utility module is kept inactive until separated from the complex, non-specific interactions of the hidden module with noncognate targets can be naturally prevented. In our demonstration, the sensing module was selected to detect serotonin, a clinically important neurotransmitter, and the target-binding-induced structure-switching of the sensing module reveals and activates the utility module that turns on a fluorescence signal. The aptamer complex exhibited a moderately high affinity and an excellent specificity for serotonin with ∼16-fold discrimination against common neurotransmitter molecules, and displayed strong robustness to perturbations in the design, disallowing nonspecific reactions against various challenges. SIGNIFICANCE: This work represents the first example of a trans aptamer complex that was in vitro selected de novo. The trans aptamer complex selected by our strategy does not require chemical modifications or immediate optimization processes to function, because the complex is directly selected to perform desired functions. This strategy should be applicable to a wide range of functional nucleic acid moieties, which will open up diverse applications in biosensing and molecular therapeutics.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Nucleic Acids , Aptamers, Nucleotide/chemistry , Serotonin , Neurotransmitter Agents , SELEX Aptamer Technique
2.
Biosens Bioelectron ; 251: 116062, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38350238

ABSTRACT

Detecting biomarkers in biofluids directly without sample treatments makes molecular diagnostics faster and more efficient. Aptasensors, the nucleic acid-based molecular biosensors, can detect a wide range of target molecules, but their susceptibility to degradation and aggregation by nucleases and charged proteins, respectively, limits their direct use in clinical samples. In this work, we demonstrate that when aptasensors are encapsulated in proteinosomes, the protein-based liposome mimics, clinically important small molecules can be sensitively and selectively detected in non-treated specimens, such as 100 % unpurified serum. As serum albumin is used to form the membrane, the nanomeshed proteinosomes become semi-permeable and antifouling, which enables exclusive admission of small molecules while blocking unwanted large proteins. Consequently, the enclosed aptasensors can maintain close-to-optimal performance for target binding, and nucleolytic degradation and electrostatic aggregation are effectively suppressed. Three different structure-switching aptamers specific for estradiol, dopamine, and cocaine, respectively, are demonstrated to fully conserve their high affinities and specificities inside the microcapsules. The shielding effect of proteinosomes is indeed exceptional; the enclosed DNA aptasensors remain completely intact over 18 h in serum and even in an extremely concentrated DNase solution (1 mg/ml, ∼300,000× the serum level). Moreover, the proteinosome-mediated compartmentalization enables independent operation of multiple aptasensors in the same mixture. Hence, simultaneous real-time sensing of two different targets is demonstrated with different operation modes, 'recording' target appearance and 'reporting' target concentration changes. This work is the first demonstration of small-molecule-specific aptasensors operating with optimal performance in serum environments and will find promising applications in molecular diagnostics.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Cocaine , Aptamers, Nucleotide/chemistry , DNA , Serum Albumin
3.
Adv Mater ; 35(42): e2303655, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37433455

ABSTRACT

Living cells efflux intracellular ions for maintaining cellular life, so intravital measurements of specific ion signals are of significant importance for studying cellular functions and pharmacokinetics. In this work, de novo synthesis of artificial K+ -selective membrane and its integration with polyelectrolyte hydrogel-based open-junction ionic diode (OJID) is demonstrated, achieving a real-time K+ -selective ion-to-ion current amplification in complex bioenvironments. By mimicking biological K+ channels and nerve impulse transmitters, in-line K+ -binding G-quartets are introduced across freestanding lipid bilayers by G-specific hexylation of monolithic G-quadruplex, and the pre-filtered K+ flow is directly converted to amplified ionic currents by the OJID with a fast response time at 100 ms intervals. By the synergistic combination of charge repulsion, sieving, and ion recognition, the synthetic membrane allows K+ transport exclusively without water leakage; it is 250× and 17× more permeable toward K+ than monovalent anion, Cl- , and polyatomic cation, N-methyl-d-glucamine+ , respectively. The molecular recognition-mediated ion channeling provides a 500% larger signal for K+ as compared to Li+ (0.6× smaller than K+ ) despite the same valence. Using the miniaturized device, non-invasive, direct, and real-time K+ efflux monitoring from living cell spheroids is achieved with minimal crosstalk, specifically in identifying osmotic shock-induced necrosis and drug-antidote dynamics.


Subject(s)
G-Quadruplexes , Ion Channels , Ion Channels/metabolism , Biological Transport , Cations/chemistry , Cell Physiological Phenomena , Potassium
4.
Nanoscale ; 14(21): 7828-7836, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35583083

ABSTRACT

As DNA polymerases are even active at ambient temperature, there is inevitable non-specific amplification; to avoid the undesired amplification of analytes, a heat activation-based polymerase chain reaction (PCR), called hot-start PCR, is widely used to be highly precise and quantitative in detection. Unlike thermocycling amplification, isothermal amplification, compatible for point-of-care (PoC) tests, cannot be benefited by the heat-activation technique, making the method qualitative rather than quantitative. In this work, we newly developed a lead ion (Pb2+) activation technique, called lead-start isothermal amplification, allowing on-demand activation or deactivation of DNA polymerases at room temperature. We systematically correlated the DNA polymerase inhibition by the TQ30 aptamer with Pb2+-responsive strand cleavage by the GR5 DNAzyme, and relying on the type of interconnectors, Pb2+ successfully served as an initiator or a terminator of isothermal DNA amplification. Our lead-start isothermal amplification was exceptionally Pb2+-specific, dramatically increasing the enzymatic activity of DNA polymerase (>25 times) only by Pb2+ introduction. Despite one-by-one sample preparation, a number of reactions can begin and end at the same time, sharing the identical amplification conditions, and thereby allowing their quantitative analysis and comparison. Using a portable UV lamp and a smartphone camera, we also succeeded in quantifying the amounts of clinically important and human papillomavirus type 16 genes in human serum and SARS-CoV-2's nucleocapsid genes in human serum and saliva, and the limit of detection was as low as 0.1 nM, highly applicable for actual PoC tests in the field with no purification process.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Lead , Limit of Detection , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Point-of-Care Testing
5.
Sci Rep ; 11(1): 12096, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34103656

ABSTRACT

To efficiently prolong analgesic effects, we developed osmotically balanced, large unilamellar liposomes (~ 6 µm in diameter) in which highly concentrated bupivacaine (up to 30 mg/mL) was encapsulated, and their sustained bupivacaine release was highly effective in relieving postoperative pain over 24 h in a rat model. Our reverse-phase evaporation method based on non-toxic alcohol, ethanol, enabled simple and cost-effective production of bupivacaine-loaded liposomes, of which osmotic pressure was readily balanced to improve the structural stability of the enlarged unilamellar liposomes along with extension of their shelf life (> a month). The in vitro release profile verified that the release duration of the bupivacaine-loaded liposomes extended up to 6 days. For the in vivo study, male Sprague-Dawley rats were used for the incisional pain model, simulating postoperative pain, and the mechanical withdrawal threshold (MWT) was measured using a von Frey filament. Compared to the control group that received intraplantar administration of normal saline, the group of liposomal bupivacaine showed that the initially increased MWT gradually decreased up to 24 h, and importantly, the analgesic effect of the liposomal bupivacaine was maintained 6 times longer than that of bupivacaine only, proving the potential of effective long-acting anesthetics.


Subject(s)
Bupivacaine , Pain, Postoperative/drug therapy , Animals , Bupivacaine/pharmacokinetics , Bupivacaine/pharmacology , Disease Models, Animal , Male , Osmosis , Pain, Postoperative/physiopathology , Rats , Rats, Sprague-Dawley , Unilamellar Liposomes
SELECTION OF CITATIONS
SEARCH DETAIL
...