Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Biochem Mol Toxicol ; 33(8): e22348, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31066958

ABSTRACT

Golgi S-nitro-N-acetylpenicillamine receptor complex 1 (GS28) has been implicated in Golgi vesicle transport. We examined the role of GS28 and its molecular mechanisms in sodium nitroprusside (SNP)-induced cell death using GS28 siRNA (siGS28)-transfected HeLa cells. Significant inhibition of cytotoxicity was observed in the cells treated with SNP, and photodegraded SNP showed equal cytotoxicity to SNP. Pretreatment with an ERK inhibitor or siErk1 cotransfection blocked the inhibition in cytotoxicity. Additionally, increased phosphorylation of ERK was maintained in the cells treated with SNP, and Nrf2 level was dependent on ERK phosphorylation. However, pretreatment with a pan-caspase inhibitor had no effect on cytotoxicity or procaspase-3 level. Pretreatment with an autophagy inhibitor or siATG5 cotransfection blocked the inhibition of cytotoxicity. The changes of LC3 corresponded to that in siErk1-cotransfected cells. These data suggest that GS28 has an inductive role in SNP-induced cell death via inhibition of ERK, leading to inhibition of autophagic processes in HeLa cells.


Subject(s)
Cell Death/drug effects , Nitroprusside/pharmacology , Qb-SNARE Proteins/metabolism , Uterine Cervical Neoplasms/pathology , Autophagy/physiology , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , HeLa Cells , Humans , NF-E2-Related Factor 2/metabolism , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Reactive Oxygen Species/metabolism , Uterine Cervical Neoplasms/metabolism
2.
Int J Med Sci ; 14(6): 515-522, 2017.
Article in English | MEDLINE | ID: mdl-28638266

ABSTRACT

Aims: GS28 (Golgi SNARE protein, 28 kDa), a member of the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) protein family, plays a critical role in mammalian endoplasmic reticulum (ER)-Golgi or intra-Golgi vesicle transport. To date, few researches on the GS28 protein in human cancer tissues have been reported. In this study, we assessed the prognostic value of GS28 in patients with colorectal cancer (CRC). Methods and results: We screened for GS28 expression using immunohistochemistry in 230 surgical CRC specimens. The CRCs were right-sided and left-sided in 28.3% (65/230) and 71.3% (164/230) of patients, respectively. GS28 staining results were available in 214 cases. Among these, there were 26 nuclear predominant cases and 188 non-nuclear predominant cases. Stromal GS28 expression was noted in 152 cases of CRC. GS28 nuclear predominant immunoreactivity was significantly associated with advanced tumour stage (p = 0.045) and marginally associated with perineural invasion (p = 0.064). Decreased GS28 expression in the stromal cells was significantly associated with lymph node metastasis (N stage; p = 0.036). GS28 expression was not associated with epidermal growth factor receptor (EGFR) immunohistochemical positivity or KRAS mutation status. Investigation of the prognostic value of GS28 with Kaplan-Meier analysis revealed a correlation with overall survival (p = 0.004). Cases with GS28 nuclear predominant expression had significantly poorer overall survival than those with a non-nuclear predominant pattern. Conclusions: Taken together, these results indicate that GS28 nuclear predominant expression could serve as a prognostic marker for CRC and may help in identifying aggressive forms of CRC.


Subject(s)
Biomarkers, Tumor/genetics , Colorectal Neoplasms/genetics , Prognosis , Qb-SNARE Proteins/genetics , Adult , Aged , Aged, 80 and over , Biological Transport/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Disease-Free Survival , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , ErbB Receptors/genetics , Female , Gene Expression Regulation, Neoplastic , Golgi Apparatus/genetics , Golgi Apparatus/metabolism , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Neoplasm Metastasis
3.
Oncol Rep ; 34(2): 920-8, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26035068

ABSTRACT

More efficient isolation and identification of cancer stem cells (CSCs) would help in determining their fundamental roles in tumor biology. The classical tool for this purpose is anchorage-independent tumorsphere culture. We compared the effects of differently textured culture plates and serum deprivation on the acquisition of CSC properties of A172 glioblastoma cells. Cells were cultured on standard polystyrene-treated plates, ultra-low attachment, poly (2-hydroxyethyl methacrylate)-coated plates, and 1% agar-coated plates with 10% serum or in serum-free glioblastoma sphere medium (GBM). Based on mitochondrial reductase activity and subG1 proportions, non-adherent conditions had a greater impact on A172 cell viability than serum deprivation. Among the stemness-related genes, SOX-2 expression was significantly upregulated by serum deprivation under non-adherent conditions, while several epithelial-to-mesenchymal transition (EMT)-related genes were less dependent on serum. In addition, reactive oxygen species (ROS) accumulation in A172 cells was significantly increased in GBM under non-adherent conditions. Despite the correlation between SOX-2 induction and ROS accumulation, treatment with the ROS scavenger N-acetyl-l-cysteine did not prevent SOX-2 expression, suggesting that ROS accumulation is not an essential requirement for induction of SOX-2. Our results suggested that cultivation of cancer cells under conditions of serum deprivation in an anchorage-independent manner may enrich SOX-2-expressing CSC-like cells in vitro.


Subject(s)
Cell Culture Techniques/instrumentation , Glioblastoma/pathology , Reactive Oxygen Species/metabolism , SOXB1 Transcription Factors/genetics , Cell Culture Techniques/methods , Cell Line, Tumor , Cell Survival , Culture Media, Serum-Free/pharmacology , Epithelial-Mesenchymal Transition/drug effects , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Neoplastic Stem Cells/pathology
4.
Korean J Physiol Pharmacol ; 18(5): 403-9, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25352760

ABSTRACT

The Bis protein is known to be involved in a variety of cellular processes including apoptosis, migration, autophagy as well as protein quality control. Bis expression is induced in response to a number of types of stress, such as heat shock or a proteasome inhibitor via the activation of heat shock factor (HSF)1. We report herein that Bis expression is increased at the transcriptional level in HK-2 kidney tubular cells and A172 glioma cells by exposure to oxidative stress such as H2O2 treatment and oxygen-glucose deprivation, respectively. The pretreatment of HK-2 cells with N-acetyl cysteine, suppressed Bis induction. Furthermore, HSF1 silencing attenuated Bis expression that was induced by H2O2, accompaniedby increase in reactive oxygen species (ROS) accumulation. Using a series of deletion constructs of the bis gene promoter, two putative heat shock elements located in the proximal region of the bis gene promoter were found to be essential for the constitutive expression is as well as the inducible expression of Bis. Taken together, our results indicate that oxidative stress induces Bis expression at the transcriptional levels via activation of HSF1, which might confer an expansion of antioxidant capacity against pro-oxidant milieu. However, the possible role of the other cis-element in the induction of Bis remains to be determined.

5.
Diabetologia ; 57(1): 214-23, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24078136

ABSTRACT

AIMS/HYPOTHESIS: B cell CLL/lymphoma 2 (BCL-2)-interacting cell death suppressor (BIS), known as an anti-stress and anti-apoptotic protein, has been reported to modulate susceptibility to oxidative stress. This study investigated the potential role of BIS as an antioxidant protein in diabetic nephropathy. METHODS: Diabetes was induced in BIS-heterozygote (BIS-HT) mice via streptozotocin injections and the resulting phenotypes were compared with those of BIS-wild-type (BIS-WT) mice over the 20 weeks following diabetes induction. RESULTS: Renal injuries, represented by increased plasma creatinine levels and increased albuminuria, were greater in diabetic BIS-HT mice than in diabetic BIS-WT mice, and were accompanied by a significant increase in reactive oxygen species (ROS) and oxidative stress markers. Moreover, renal pathological changes and the apoptotic process were accelerated in diabetic BIS-HT mice compared with diabetic BIS-WT mice with the same degree of hyperglycaemia; all were restored by 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (tempol) treatment. The levels of NADPH oxidase and related proteins were not significantly higher in diabetic BIS-HT mice compared with diabetic BIS-WT mice. However, levels of superoxide dismutase (SOD)1 and SOD2 increased on the induction of diabetes in BIS-WT mice but not in BIS-HT mice, correlating with the total SOD activity. An in vitro study showed that knockdown of BIS production also resulted in impaired induction of SOD activity as well as SOD levels in HK-2 and NMS cells, concomitant with significant ROS accumulation. CONCLUSION/INTERPRETATION: Our results suggest that the decreased antioxidant capacity of BIS aggravates diabetic nephropathy in diabetic BIS-HT mice, possibly as a result of the disruption in the regulation of SOD protein quality under oxidative stress.


Subject(s)
Diabetic Nephropathies/metabolism , Superoxide Dismutase/metabolism , Adaptor Proteins, Signal Transducing , Animals , Apoptosis Regulatory Proteins/metabolism , Male , Mice , Oxidative Stress/physiology , Superoxide Dismutase-1
6.
Nutr Cancer ; 63(4): 645-52, 2011.
Article in English | MEDLINE | ID: mdl-21547849

ABSTRACT

Chungkookjang is a Korean fermented soybean containing microorganisms, proteinase, and diverse bioactive compounds, including a high concentration of isoflavones and peptides. Growth of breast cancer MCF7 cells decreased dependent on the concentration of fermented soybean extracts. The effect of fermented soybean on cellular gene expression was determined in a systematic manner comprehensively. DNA microarray analysis was performed using 25,804 probes. Ninety one genes whose expression levels were significantly changed were selected. TGFßI and Smad3 were upregulated. Downregulation of inflammation-related CSF2, CSF2RA, and CSF3 was found. Differential expression of chemokines CCL2, CCL3, CCL3L3, CXCL1, and CXCL2 were observed. Network analysis identified ERß in the network. Based on the experimental results, taking fermented soybean might be helpful for preventing breast cancer by a mechanism activating TGFß pathway and depressing inflammation.


Subject(s)
Isoflavones/pharmacology , Signal Transduction , Soybean Proteins/pharmacology , Transforming Growth Factor beta/metabolism , Cell Line, Tumor , Cell Survival , Chemokines/genetics , Chemokines/metabolism , Down-Regulation , Fermentation , Gene Expression Profiling , Humans , Oligonucleotide Array Sequence Analysis , Receptors, Colony-Stimulating Factor/genetics , Receptors, Colony-Stimulating Factor/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Smad3 Protein/genetics , Smad3 Protein/metabolism , Glycine max , Transforming Growth Factor beta/genetics , Up-Regulation
7.
J Microbiol ; 45(3): 256-61, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17618232

ABSTRACT

Apoptosis is a step of the cell cycle which is important in the regulation of immune cell populations. Chungkookjang is a Korean traditional fermented soybean containing microorganisms, enzymes, and bioactive compounds which was used in the treatment of mouse spleen as well as thymus cells (CH1-fermented soybean containing barley, wormwood, and sea tangle; CH2-fermented soybean) and was found to exhibit substantially reduced small DNA fragmentation. An MTT assay showed that the treatment of CH1 and CH2 into the mouse splenocytes and thymocytes sharply increased their survival. Moreover, a FACS analysis also showed that CH1 and CH2 are effective at suppressing the apoptosis of splenocytes and thymocytes. The fermented soybean isoflavone concentrations, which are implicated in lowering breast and prostate cancers, lowering the risk of cardiovascular diseases, and improving bone health, were determined using Capillary Electrophoresis-Electrochemical Detection (CE-ED). The amount of Daidzein in fermented soybean significantly increased by 44-fold dramatically, compared with those in unfermented soybean. In this study, we demonstrated that ethanol extracts of Chungkookjang promote the survival of the mouse spleen and thymus cells in culture by suppressing their apoptotic death. Future studies should investigate which genes are related to apoptosis of the immune cells.


Subject(s)
Apoptosis/drug effects , Glycine max/metabolism , Immunologic Factors/pharmacology , Lymphocytes/drug effects , Plant Extracts/pharmacology , Animals , Annexin A5/analysis , Cell Survival , Cells, Cultured , DNA Fragmentation , Electrophoresis, Capillary , Fermentation , Flow Cytometry , Isoflavones/analysis , Lymphocytes/cytology , Mice , Mice, Inbred BALB C , Plant Extracts/chemistry , Propidium/metabolism , Spleen/cytology , Tetrazolium Salts/metabolism , Thiazoles/metabolism , Thymus Gland/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...