Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioprocess Biosyst Eng ; 36(6): 729-36, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23361185

ABSTRACT

Photosynthetic microalgae have received much attention as a microbial source of diverse useful biomaterials through CO(2) fixation and various types of photo-bioreactors have been developed for efficient microalgal cultivation. Herein, we developed a novel thin-film photo-bioreactor, which was made of cast polypropylene film, considering outdoor mass cultivation. To develop optimal design of photo-bioreactor, we tested performance of three shapes of thin-film photo-bioreactors (flat, horizontal and vertical tubular shapes) and various parts in the bioreactor. Collectively, vertical tubular bioreactor with H/D ratio 6:1 and cylindrical stainless steel spargers showed the most outstanding performance. Furthermore, the photo-bioreactor was successfully applied to the cultivation of other microalgae such as Chlamydomonas reinhardtii and Chlorella vulgaris. The scalability of photo-bioreactor was confirmed by gradually increasing culture volume from 4 to 25 L and the biomass productivity of each reactor was quite consistent (0.05-0.07 g/L/day) during the cultivation of H. pluvialis under indoor and outdoor conditions. Especially, we also achieved dry cell weight of 4.64 g/L and astaxanthin yield of 218.16 mg/L through long-term cultivation (100 days) under outdoor condition in 15 L photo-bioreactor using Haematococcus pluvialis, which means that the astaxanthin yield from outdoor cultivation is equal or superior to that obtained from controlled indoor condition. Therefore, these results indicate that we can apply this approach to development of optimal photo-bioreactor for the large-scale culture of microalgae and production of useful biomaterials under outdoor condition.


Subject(s)
Biomass , Bioreactors , Chlorophyta/growth & development , Chlorophyta/metabolism , Xanthophylls/biosynthesis
2.
Bioprocess Biosyst Eng ; 35(1-2): 309-15, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21909667

ABSTRACT

The unicellular green microalgae, Haematococcus pluvialis, has been examined as a microbial source for the production of astaxanthin, which has been suggested as a food supplement for humans and is also prescribed as an ingredient in eye drops because of its powerful anti-oxidant properties. In this study, we estimated the effects of the slope of a V-shaped bottom design, the volumetric flow rate of air, height/diameter (H/D) ratio, and diameter of an air sparger on the performance of a photo-bioreactor. These parameters were selected because they are recognized as important factors effecting the mixing that produces increased cell density in the reactor. The mixing effect can be measured by changes in optical density in the bioreactor over a period of time. A 6 L indoor photo-bioreactor was prepared in a short time period of 24 h for the performance study. A bioreactor designed with a V-shaped bottom with a slope of 60° showed an optical density change of 0.052 at 680 nm, which was sixfold less than the change in a photo-bioreactor designed with a flat bottom. Studies exploring the effects of bioreactor configuration and a porous metal sparger with a 10 µm pore size showed the best performance at an H/D ratio of 6:1 and a sparger diameter of 1.3 cm, respectively. The optimal rate of air flow was 0.2 vvm. The indoor culture of microalgae in the photo-bioreactor was subsequently carried for an application study using the optimal values established for the important factors. The indoor culture system was composed of a light source controlled according to cell phase, a carbon dioxide feeder, a bag-type reactor with an H/D ratio of 6:1, and a temperature controller. Results demonstrated the efficient production of microalgal cells and astaxanthin in the amounts of 2.62 g/L and 78.37 mg/L, respectively, when using adequate hydrodynamic mixing. Furthermore, the optimal design of a photo-bioreactor can be applied for the phototropic culturing of other microalgae for mass production.


Subject(s)
Cell Culture Techniques/instrumentation , Chlorophyta/physiology , Chlorophyta/radiation effects , Photobioreactors/microbiology , Cell Proliferation/radiation effects , Cell Survival/radiation effects , Dose-Response Relationship, Radiation , Equipment Design , Equipment Failure Analysis , Light , Phototrophic Processes/physiology , Phototrophic Processes/radiation effects , Pilot Projects , Radiation Dosage
3.
J Microbiol ; 42(4): 278-84, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15650683

ABSTRACT

Changes in the soil bacterial community of a coniferous forest were analyzed to assess microbial responses to wildfire. Soil samples were collected from three different depths in lightly and severely burned areas, as well as a nearby unburned control area. Direct bacterial counts ranged from 3.3-22.6 x 10(8) cells/(g.soil). In surface soil, direct bacterial counts of unburned soil exhibited a great degree of fluctuation. Those in lightly burned soil changed less, but no significant variation was observed in the severely burned soil. The fluctuations of direct bacterial count were less in the middle and deep soil layers. The structure of the bacterial community was analyzed via the fluorescent in situ hybridization method. The number of bacteria detected with the eubacteria-targeted probe out of the direct bacterial count varied from 30.3 to 84.7%, and these ratios were generally higher in the burned soils than in the unburned control soils. In the surface unburned soil, the ratios of alpha-, beta- and gamma-proteobacteria, Cytophaga-Flavobacterium group, and other eubacteria groups to total eubacteria were 9.9, 10.6, 15.5, 9.0, and 55.0%, respectively, and these ratios were relatively stable. The ratios of alpha-, beta- and gamma-proteobacteria, and Cytophaga-Flavobacterium group to total eubacteria increased immediately after the wildfire, and the other eubacterial proportions decreased in the surface and middle layer soils. By way of contrast, the composition of the 5 groups of eubacteria in the subsurface soil exhibited no significant fluctuations during the entire period. The total bacterial population and bacterial community structure disturbed by wildfire soon began to recover, and original levels seemed to be restored 3 months after the wildfire.


Subject(s)
Bacteria/isolation & purification , Environmental Monitoring , Fires , Soil Microbiology , Trees , Bacteria/genetics , Colony Count, Microbial , Cytophaga/genetics , Cytophaga/isolation & purification , Flavobacterium/genetics , Flavobacterium/isolation & purification , In Situ Hybridization, Fluorescence , Korea , Proteobacteria/genetics , Proteobacteria/isolation & purification , Time Factors
4.
J Microbiol ; 42(4): 285-91, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15650684

ABSTRACT

The soil bacterial community and some inoculated bacteria were monitored to assess the microbial responses to prescribed fire in their microcosm. An acridine orange direct count of the bacteria in the unburned control soil were maintained at a relatively stable level (2.0 approximately 2.7 x 10(9) cells/g(-1).soil) during the 180 day study period. The number of bacteria in the surface soil was decreased by fire, but was restored after 3 months. Inoculation of some bacteria increased the number of inoculated bacteria several times and these elevated levels lasted several months. The ratios of eubacteria detected by a fluorescent in situ hybridization (FISH) method to direct bacterial count were in the range of 60 approximately 80% during the study period, with the exception of some lower values at the beginning, but there were no definite differences between the burned and unburned soils or the inoculated and uninoculated soils. In the unburned control soil, the ratios of alpha-, beta- and gamma-subgroups of the proteobacteria, Cytophaga-Flavobacterium and other eubacteria groups to that of the entire eubacteria were 13.7, 31.7, 17.1, 16.8 and 20.8%, respectively, at time 0. The overall change on the patterns of the ratios of the 5 subgroups of eubacteria in the uninoculated burned and inoculated soils were similar to those of the unburned control soil, with the exception of some minor variations during the initial period. The proportions of each group of eubacteria became similar in the different microcosms after 6 months, which may indicate the recovery of the original soil microbial community structure after fire or the inoculation of some bacteria. The populations of Azotobacter vinelandii, Bacillus megaterium and Pseudomonas fluorescens, which had been inoculated to enhance the microbial activities, and monitored by FISH method, showed similar changes in the microcosms, and maintained high levels for several months.


Subject(s)
Bacteria/growth & development , Ecosystem , Fires , Soil Microbiology , Trees , Bacillus/growth & development , Bacillus/isolation & purification , Bacteria/isolation & purification , Colony Count, Microbial , Environmental Monitoring , Gram-Negative Aerobic Rods and Cocci/growth & development , Gram-Negative Aerobic Rods and Cocci/isolation & purification , In Situ Hybridization, Fluorescence , Proteobacteria/growth & development , Proteobacteria/isolation & purification , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...