Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Bioinformatics ; 39(12)2023 12 01.
Article in English | MEDLINE | ID: mdl-37995286

ABSTRACT

MOTIVATION: Predicting protein structures with high accuracy is a critical challenge for the broad community of life sciences and industry. Despite progress made by deep neural networks like AlphaFold2, there is a need for further improvements in the quality of detailed structures, such as side-chains, along with protein backbone structures. RESULTS: Building upon the successes of AlphaFold2, the modifications we made include changing the losses of side-chain torsion angles and frame aligned point error, adding loss functions for side chain confidence and secondary structure prediction, and replacing template feature generation with a new alignment method based on conditional random fields. We also performed re-optimization by conformational space annealing using a molecular mechanics energy function which integrates the potential energies obtained from distogram and side-chain prediction. In the CASP15 blind test for single protein and domain modeling (109 domains), DeepFold ranked fourth among 132 groups with improvements in the details of the structure in terms of backbone, side-chain, and Molprobity. In terms of protein backbone accuracy, DeepFold achieved a median GDT-TS score of 88.64 compared with 85.88 of AlphaFold2. For TBM-easy/hard targets, DeepFold ranked at the top based on Z-scores for GDT-TS. This shows its practical value to the structural biology community, which demands highly accurate structures. In addition, a thorough analysis of 55 domains from 39 targets with publicly available structures indicates that DeepFold shows superior side-chain accuracy and Molprobity scores among the top-performing groups. AVAILABILITY AND IMPLEMENTATION: DeepFold tools are open-source software available at https://github.com/newtonjoo/deepfold.


Subject(s)
Proteins , Software , Protein Conformation , Proteins/chemistry , Protein Structure, Secondary , Protein Folding
2.
Nat Commun ; 14(1): 1461, 2023 04 04.
Article in English | MEDLINE | ID: mdl-37015934

ABSTRACT

In drug discovery, efficient screening of protein-drug interactions (PDIs) is hampered by the limitations of current biophysical approaches. Here, we develop a biological nanopore sensor for single-molecule detection of proteins and PDIs using the pore-forming toxin YaxAB. Using this YaxAB nanopore, we demonstrate label-free, single-molecule detection of interactions between the anticancer Bcl-xL protein and small-molecule drugs as well as the Bak-BH3 peptide. The long funnel-shaped structure and nanofluidic characteristics of the YaxAB nanopore enable the electro-osmotic trapping of diverse folded proteins and high-resolution monitoring of PDIs. Distinctive nanopore event distributions observed in the two-dimensional (ΔI/Io-versus-IN) plot illustrate the ability of the YaxAB nanopore to discriminate individual small-molecule drugs bound to Bcl-xL from non-binders. Taken together, our results present the YaxAB nanopore as a robust platform for label-free, ultrasensitive, single-molecule detection of PDIs, opening up a possibility for low-cost, highly efficient drug discovery against diverse drug targets.


Subject(s)
Nanopores , Nanotechnology/methods , Drug Interactions
3.
Nat Commun ; 14(1): 1347, 2023 03 11.
Article in English | MEDLINE | ID: mdl-36906653

ABSTRACT

Connexin 36 (Cx36) is responsible for signal transmission in electrical synapses by forming interneuronal gap junctions. Despite the critical role of Cx36 in normal brain function, the molecular architecture of the Cx36 gap junction channel (GJC) is unknown. Here, we determine cryo-electron microscopy structures of Cx36 GJC at 2.2-3.6 Å resolutions, revealing a dynamic equilibrium between its closed and open states. In the closed state, channel pores are obstructed by lipids, while N-terminal helices (NTHs) are excluded from the pore. In the open state with pore-lining NTHs, the pore is more acidic than those in Cx26 and Cx46/50 GJCs, explaining its strong cation selectivity. The conformational change during channel opening also includes the α-to-π-helix transition of the first transmembrane helix, which weakens the protomer-protomer interaction. Our structural analyses provide high resolution information on the conformational flexibility of Cx36 GJC and suggest a potential role of lipids in the channel gating.


Subject(s)
Connexins , Electrical Synapses , Humans , Connexins/metabolism , Cryoelectron Microscopy , Gap Junctions/metabolism , Ion Channels , Lipids , Protein Subunits , Gap Junction delta-2 Protein
4.
Nat Commun ; 14(1): 931, 2023 02 18.
Article in English | MEDLINE | ID: mdl-36805660

ABSTRACT

Connexin family proteins assemble into hexameric hemichannels in the cell membrane. The hemichannels dock together between two adjacent membranes to form gap junction intercellular channels (GJIChs). We report the cryo-electron microscopy structures of Cx43 GJICh, revealing the dynamic equilibrium state of various channel conformations in detergents and lipid nanodiscs. We identify three different N-terminal helix conformations of Cx43-gate-covering (GCN), pore-lining (PLN), and flexible intermediate (FIN)-that are randomly distributed in purified GJICh particles. The conformational equilibrium shifts to GCN by cholesteryl hemisuccinates and to PLN by C-terminal truncations and at varying pH. While GJIChs that mainly comprise GCN protomers are occluded by lipids, those containing conformationally heterogeneous protomers show markedly different pore sizes. We observe an α-to-π-helix transition in the first transmembrane helix, which creates a side opening to the membrane in the FIN and PLN conformations. This study provides basic structural information to understand the mechanisms of action and regulation of Cx43 GJICh.


Subject(s)
Connexin 43 , Ion Channels , Humans , Cryoelectron Microscopy , Protein Subunits , Gap Junctions
5.
Soft Matter ; 19(3): 574, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36606745

ABSTRACT

Correction for 'Aggregation or phase separation can be induced in highly charged proteins by small charged biomolecules' by Minchae Kang et al., Soft Matter, 2022, 18, 3313-3317, https://doi.org/10.1039/D2SM00384H.

6.
Soft Matter ; 18(17): 3313-3317, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35437537

ABSTRACT

Protein phase separation in biological systems has captured the attention of scientists in the last decade; however, the main mechanism underlying protein phase separation in cells remains unclear. Biologists, physicists, and chemists have all tried to understand this important biological phenomenon, each using their own unique techniques and language. Each subject has its advantages in explaining protein phase separation; however, in this study, we find that the chemical language of molecular structure is the key to explaining the mechanism underlying protein phase separation. Using fluroescence microscopy and molecular dynamics, this study identifies small multivalently charged biomolecules, such as nucleoside triphosphate (negatively charged) and polyamine (positively charged), as important drivers of phase separation of highly charged proteins in cells.


Subject(s)
Molecular Dynamics Simulation , Proteins , Proteins/chemistry
7.
Nanoscale ; 13(47): 20186-20196, 2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34847218

ABSTRACT

Looping of double-stranded DNA molecules with 100-200 base pairs into minicircles, catenanes, and rotaxanes has been suggested as a potential tool for DNA nanotechnologies. However, sharp DNA bending into a minicircle with a diameter of several to ten nanometers occurs with alterations in the DNA helical structure and may lead to defective kink formation that hampers the use of DNA minicircles, catenanes, and rotaxanes in nanoscale DNA applications. Here, we investigated local variations of a helical twist in sharply bent DNA using microsecond-long all-atom molecular dynamics simulations of six different DNA minicircles, focusing on the sequence dependence of the coupling between DNA bending and its helical twist. Twist angles between consecutive base pairs were analyzed at different locations relative to the direction of DNA bending and, among 10 unique dinucleotide steps, we identified four dinucleotide steps with strong twist-bend coupling, the pyrimidine-purine dinucleotide steps of TA/TA, CG/CG, and CA/TG and the purine-purine dinucleotide step of GA/TC. This work suggests the sequence-dependent structural responses of DNA to strong mechanical deformation, providing new molecular-level insights into the structure and stability of sharply bent DNA minicircles for nanoscale applications.


Subject(s)
DNA , Molecular Dynamics Simulation , Base Pairing , Base Sequence , Nucleic Acid Conformation
8.
Nucleic Acids Res ; 49(20): 11459-11475, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34718725

ABSTRACT

Eukaryotic genome and methylome encode DNA fragments' propensity to form nucleosome particles. Although the mechanical properties of DNA possibly orchestrate such encoding, the definite link between 'omics' and DNA energetics has remained elusive. Here, we bridge the divide by examining the sequence-dependent energetics of highly bent DNA. Molecular dynamics simulations of 42 intact DNA minicircles reveal that each DNA minicircle undergoes inside-out conformational transitions with the most likely configuration uniquely prescribed by the nucleotide sequence and methylation of DNA. The minicircles' local geometry consists of straight segments connected by sharp bends compressing the DNA's inward-facing major groove. Such an uneven distribution of the bending stress favors minimum free energy configurations that avoid stiff base pair sequences at inward-facing major grooves. Analysis of the minicircles' inside-out free energy landscapes yields a discrete worm-like chain model of bent DNA energetics that accurately account for its nucleotide sequence and methylation. Experimentally measuring the dependence of the DNA looping time on the DNA sequence validates the model. When applied to a nucleosome-like DNA configuration, the model quantitatively reproduces yeast and human genomes' nucleosome occupancy. Further analyses of the genome-wide chromatin structure data suggest that DNA bending energetics is a fundamental determinant of genome architecture.


Subject(s)
DNA Methylation , DNA, Circular/chemistry , Molecular Dynamics Simulation , Nucleic Acid Conformation
9.
ACS Omega ; 6(29): 18728-18736, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34337212

ABSTRACT

We present extensive molecular dynamics simulations of a cationic nanoparticle and a double-stranded DNA molecule to discuss the effect of DNA flexibility on the complex formation of a cationic nanoparticle with double-stranded DNA. Martini coarse-grained models were employed to describe double-stranded DNA molecules with two different flexibilities and cationic nanoparticles with three different electric charges. As the electric charge of a cationic nanoparticle increases, the degree of DNA bending increases, eventually leading to the wrapping of DNA around the nanoparticle at high electric charges. However, a small increase in the persistence length of DNA by 10 nm requires a cationic nanoparticle with a markedly increased electric charge to bend and wrap DNA around. Thus, a more flexible DNA molecule bends and wraps around a cationic nanoparticle with an intermediate electric charge, whereas a less flexible DNA molecule binds to a nanoparticle with the same electric charge without notable bending. This work provides solid evidence that a small difference in DNA flexibility (as small as 10 nm in persistence length) has a substantial influence on the complex formation of DNA with proteins from a biological perspective and suggests that the variation of sequence-dependent DNA flexibility can be utilized in DNA nanotechnology as a new tool to manipulate the structure of DNA molecules mediated by nanoparticle binding.

10.
Sci Adv ; 6(35): eaba4996, 2020 08.
Article in English | MEDLINE | ID: mdl-32923625

ABSTRACT

Connexin family proteins assemble into hexameric channels called hemichannels/connexons, which function as transmembrane channels or dock together to form gap junction intercellular channels (GJIChs). We determined the cryo-electron microscopy structures of human connexin 31.3 (Cx31.3)/GJC3 hemichannels in the presence and absence of calcium ions and with a hearing-loss mutation R15G at 2.3-, 2.5-, and 2.6-Å resolutions, respectively. Compared with available structures of GJICh in open conformation, Cx31.3 hemichannel shows substantial structural changes of highly conserved regions in the connexin family, including opening of calcium ion-binding tunnels, reorganization of salt-bridge networks, exposure of lipid-binding sites, and collocation of amino-terminal helices at the cytoplasmic entrance. We also found that the hemichannel has a pore with a diameter of ~8 Å and selectively transports chloride ions. Our study provides structural insights into the permeant selectivity of Cx31.3 hemichannel.


Subject(s)
Calcium , Connexins , Calcium/metabolism , Connexins/metabolism , Cryoelectron Microscopy , Gap Junctions/metabolism , Humans , Ion Channels/chemistry , Ions/metabolism , Nerve Tissue Proteins/metabolism
11.
Curr Opin Struct Biol ; 64: 88-96, 2020 10.
Article in English | MEDLINE | ID: mdl-32682257

ABSTRACT

The all-atom molecular dynamics method can characterize the molecular-level interactions in DNA and DNA-protein systems with unprecedented resolution. Recent advances in computational technologies have allowed the method to reveal the unbiased behavior of such systems at the microseconds time scale, whereas enhanced sampling approaches have matured enough to characterize the interaction free energy with quantitative precision. Here, we describe recent progress toward increasing the realism of such simulations by refining the accuracy of the molecular dynamics force field, and we highlight recent application of the method to systems of outstanding biological interest.


Subject(s)
DNA , Molecular Dynamics Simulation , Entropy , Proteins
12.
J Chem Theory Comput ; 16(7): 4006-4013, 2020 Jul 14.
Article in English | MEDLINE | ID: mdl-32543861

ABSTRACT

As the field of molecular dynamics simulation utilizing the force fields is moving toward more complex systems, the accuracy of intermolecular interactions has become a central issue of the field. Here, we quantitatively evaluate the accuracy of the protein-DNA interactions in AMBER and CHARMM force fields by comparing experimental and simulated diffusion coefficients of proliferating cell nuclear antigen. We find that both force fields underestimate diffusion coefficients by at least an order of magnitude because the interactions between basic amino acids and DNA phosphate groups are too attractive. Then, we propose Lennard-Jones parameters optimized using the experimental osmotic pressure data of model chemicals, by using which one can reproduce the experimental diffusion coefficients. Newly optimized parameters will have a broad impact on general protein-DNA interactions.


Subject(s)
DNA/chemistry , Molecular Dynamics Simulation , Proliferating Cell Nuclear Antigen/chemistry , Amino Acid Sequence , DNA/metabolism , Diffusion , Proliferating Cell Nuclear Antigen/metabolism , Protein Binding , Protein Structure, Quaternary , Static Electricity
13.
Angew Chem Int Ed Engl ; 59(9): 3460-3464, 2020 02 24.
Article in English | MEDLINE | ID: mdl-31863556

ABSTRACT

Hierarchical self-assembly of building blocks over multiple length scales is ubiquitous in living organisms. Microtubules are one of the principal cellular components formed by hierarchical self-assembly of nanometer-sized tubulin heterodimers into protofilaments, which then associate to form micron-length-scale, multi-stranded tubes. This peculiar biological process is now mimicked with a fully synthetic molecule, which forms a 1:1 host-guest complex with cucurbit[7]uril as a globular building block, and then polymerizes into linear poly-pseudorotaxanes that associate laterally with each other in a self-shape-complementary manner to form a tubular structure with a length over tens of micrometers. Molecular dynamic simulations suggest that the tubular assembly consists of eight poly-pseudorotaxanes that wind together to form a 4.5 nm wide multi-stranded tubule.


Subject(s)
Microtubules/chemistry , Polymers/chemistry , Bridged-Ring Compounds/chemistry , Imidazoles/chemistry , Microscopy, Atomic Force , Microscopy, Electron, Transmission , Microtubules/metabolism , Molecular Dynamics Simulation , Rotaxanes/chemistry
14.
Methods Mol Biol ; 1811: E3, 2018.
Article in English | MEDLINE | ID: mdl-30484170

ABSTRACT

Correction to: Chapter 15 in: Giampaolo Zuccheri (ed.), DNA Nanotechnology: Methods and Protocols, Methods in Molecular Biology, vol. 1811, https://doi.org/10.1007/978-1-4939-8582-1_15.

15.
J Am Chem Soc ; 140(44): 14547-14551, 2018 11 07.
Article in English | MEDLINE | ID: mdl-30272449

ABSTRACT

We report a new approach to building hierarchical superstructures using a shape-persistent porous organic cage, which acts as a premade secondary building unit, and coordination chemistry. To illustrate the principle, a zinc-metalated porphyrin box (Zn-PB), a corner-truncated cubic porous cage, was connected by suitable dipyridyl terminated bridging ligands to construct PB-based hierarchical superstructures (PSSs). The PSSs were stabilized not only by the coordination bonds between Zn ions and bipyridyl-terminated ligands but also by π-π interactions between the corners of the Zn-PB units. By varying the length of the linker, we identified an optimum range of the linker length for construction of PSSs. The PSSs have large void volumes and an extrinsic surface area compared to the parent PBs, which can be exploited for the selective encapsulation and interior functionalization of the PSSs for various applications, including catalysis. We observed that singlet oxygen induced synthesis of the natural product, juglone, is more efficiently catalyzed by PSS-1 than its constituent component Zn-PB.

16.
Nucleic Acids Res ; 46(18): 9401-9413, 2018 10 12.
Article in English | MEDLINE | ID: mdl-30032232

ABSTRACT

The physical properties of DNA have been suggested to play a central role in spatio-temporal organization of eukaryotic chromosomes. Experimental correlations have been established between the local nucleotide content of DNA and the frequency of inter- and intra-chromosomal contacts but the underlying physical mechanism remains unknown. Here, we combine fluorescence resonance energy transfer (FRET) measurements, precipitation assays, and molecular dynamics simulations to characterize the effect of DNA nucleotide content, sequence, and methylation on inter-DNA association and its correlation with DNA looping. First, we show that the strength of DNA condensation mediated by poly-lysine peptides as a reduced model of histone tails depends on the DNA's global nucleotide content but also on the local nucleotide sequence, which turns out to be qualitatively same as the condensation by spermine. Next, we show that the presence and spatial arrangement of C5 methyl groups determines the strength of inter-DNA attraction, partially explaining why RNA resists condensation. Interestingly, multi-color single molecule FRET measurements reveal strong anti-correlation between DNA looping and DNA-DNA association, suggesting that a common biophysical mechanism underlies them. We propose that the differential affinity between DNA regions of varying sequence pattern may drive the phase separation of chromatin into chromosomal subdomains.


Subject(s)
Base Sequence/physiology , Chromatin/chemistry , DNA Packaging/genetics , DNA/chemistry , Nucleic Acid Conformation , Chemical Fractionation/methods , Chemical Precipitation , Chromatin/metabolism , Chromatin Assembly and Disassembly/genetics , DNA/metabolism , Fluorescence Resonance Energy Transfer , Histones/metabolism , Molecular Dynamics Simulation
17.
Nat Commun ; 9(1): 2426, 2018 06 21.
Article in English | MEDLINE | ID: mdl-29930243

ABSTRACT

Mimicking enzyme function and increasing performance of naturally evolved proteins is one of the most challenging and intriguing aims of nanoscience. Here, we employ DNA nanotechnology to design a synthetic enzyme that substantially outperforms its biological archetypes. Consisting of only eight strands, our DNA nanostructure spontaneously inserts into biological membranes by forming a toroidal pore that connects the membrane's inner and outer leaflets. The membrane insertion catalyzes spontaneous transport of lipid molecules between the bilayer leaflets, rapidly equilibrating the lipid composition. Through a combination of microscopic simulations and fluorescence microscopy we find the lipid transport rate catalyzed by the DNA nanostructure exceeds 107 molecules per second, which is three orders of magnitude higher than the rate of lipid transport catalyzed by biological enzymes. Furthermore, we show that our DNA-based enzyme can control the composition of human cell membranes, which opens new avenues for applications of membrane-interacting DNA systems in medicine.


Subject(s)
Cell Membrane/chemistry , DNA/chemistry , Lipid Metabolism , Membrane Proteins/chemistry , Nanotechnology/methods , Biological Transport , Cell Line, Tumor , Humans , Models, Molecular
18.
Methods Mol Biol ; 1811: 209-229, 2018.
Article in English | MEDLINE | ID: mdl-29926456

ABSTRACT

The DNA origami method exploits the self-assembly property of nucleic acids to build diverse nanoscale systems. The all-atom molecular dynamics (MD) method has emerged as a powerful computational tool for atomic-resolution characterization of the in situ structure and physical properties of DNA origami objects. This chapter provides step-by-step instructions for building atomic-scale models of DNA origami systems, using the MD method to simulate the models, and performing basic analyses of the resulting MD trajectories.


Subject(s)
DNA/chemistry , Nanostructures/chemistry , Diagnostic Tests, Routine , Models, Molecular , Molecular Dynamics Simulation , Nucleic Acid Conformation
19.
Phys Chem Chem Phys ; 20(13): 8432-8449, 2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29547221

ABSTRACT

In contrast to ordinary polymers, the vast majority of biological macromolecules adopt highly ordered three-dimensional structures that define their functions. The key to folding of a biopolymer into a unique 3D structure or to an assembly of several biopolymers into a functional unit is a delicate balance between the attractive and repulsive forces that also makes such self-assembly reversible under physiological conditions. The all-atom molecular dynamics (MD) method has emerged as a powerful tool for studies of individual biomolecules and their functional assemblies, encompassing systems of ever increasing complexity. However, advances in parallel computing technology have outpaced the development of the underlying theoretical models-the molecular force fields, pushing the MD method into an untested territory. Recent tests of the MD method have found the most commonly used molecular force fields to be out of balance, overestimating attractive interactions between charged and hydrophobic groups, which can promote artificial aggregation in MD simulations of multi-component protein, nucleic acid, and lipid systems. One route towards improving the force fields is through the NBFIX corrections method, in which the intermolecular forces are calibrated against experimentally measured quantities such as osmotic pressure by making atom pair-specific adjustments to the non-bonded interactions. In this article, we review development of the NBFIX (Non-Bonded FIX) corrections to the AMBER and CHARMM force fields and discuss their implications for MD simulations of electrolyte solutions, dense DNA systems, Holliday junctions, protein folding, and lipid bilayer membranes.


Subject(s)
Computer Simulation , Molecular Dynamics Simulation , Biomechanical Phenomena , Protein Folding
20.
Angew Chem Int Ed Engl ; 57(12): 3132-3136, 2018 03 12.
Article in English | MEDLINE | ID: mdl-29377454

ABSTRACT

Serendipitously, mono-allyloxylated cucurbit[7]uril (AO1 CB[7]) was discovered to act as an unconventional amphiphile which self-assembles into light-responsive vesicles (AO1 CB[7]VC) in water. Although the mono-allyloxy group, directly tethered on the periphery of CB[7], is much shorter (C4) than the hydrophobic tails of conventional amphiphiles, it played an important role in vesicle formation. Light-activated transformation of the allyloxy group by conjugation with glutathione was exploited as a remote tool to disrupt the vesicle. The vesicle showed on-demand release of cargo upon irradiation by a laser, after they were internalized into cancer cells. This result demonstrated the potential of AO1 CB[7]VC as a new type of light-responsive intracellular delivery vehicle for the release of therapeutic cargo, within cells, on demand.

SELECTION OF CITATIONS
SEARCH DETAIL
...