Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 12(19)2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36234448

ABSTRACT

The rapid development of electric vehicles has generated a recent demand for high energy density lithium-ion batteries (LIBs). One simple, effective way to enhance energy density of LIBs is to increase the thickness of electrodes. However, the conventional wet process used to fabricate thick electrodes involves the evaporation of large amounts of organic solvents, which causes an inhomogeneous distribution of conductive additives and binders. This weakens the mechanical and electrochemical network between active materials, resulting in poor electrochemical performance and structural degradation. Herein, we introduce a new strategy to produce homogeneous thick electrodes by using a dry, solvent-free process. Instead of using a conventional PVDF (polyvinylidene fluoride) binder, we employed a phenoxy resin as the binder in dry process for the first time. This thermoplastic binder exhibits better ductile properties than PVDF in the way that it generates a uniform network structure that connects the active materials during the hot press process. This enables the production electrochemically stable electrodes without using organic solvents, which record capacity retention rates of 73.5% over 50 cycles at a 40 mg/cm2 of thick electrodes. By contrast, thick electrodes produced with a PVDF binder via wet processing only have a capacity retention rate of 21.8% due to rapid structural degradation.

2.
Nanomaterials (Basel) ; 12(19)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36234483

ABSTRACT

Silicon is a promising anode material that can increase the theoretical capacity of lithium-ion batteries (LIBs). However, the volume expansion of silicon remains a challenge. In this study, we employed a novel combination of conductive additives to effectively suppress the volume expansion of Si during charging/discharging cycles. Rather than carbon black (CB), which is commonly used in SiO anodes, we introduced single-walled carbon nanotubes (SWCNTs) as a conductive additive. Owing to their high aspect ratio, CNTs enable effective connection of SiO particles, leading to stable electrochemical operation to prevent volume expansion. In addition, we explored a combination of CB and SWCNTs, with results showing a synergetic effect compared to a single-component of SWCNTs, as small-sized CB particles can enhance the interface contact between the conductive additive and SiO particles, whereas SWCNTs have limited contact points. With this hybrid conductive additive, we achieved a stable operation of full-cell LIBs for more than 200 cycles, with a retention rate of 91.1%, whereas conventional CB showed a 74.0% specific capacity retention rate.

3.
ACS Appl Mater Interfaces ; 13(17): 19970-19982, 2021 May 05.
Article in English | MEDLINE | ID: mdl-33880915

ABSTRACT

Cylindrical-type cells have been widely adopted by major battery and electric vehicle manufacturers owing to their price competitiveness, safety, and easy expandability. However, placement of electrodes at the core of cylindrical cells is currently restricted because of high electrode curvature and the lack of specialized electrodes and electrode materials. Here, we report the realization of highly flexible high-energy-density electrodes (active material loading of >98.4%) that can be used at the cores of cylindrical cells. The improved properties result from the introduction of a multifunctional poly(melamine-co-formaldehyde) (MF copolymer) additive, which yields a relatively more fluidic and well-dispersed slurry using only 0.08 wt %. MF copolymer-mediated formation of completely wrapped CNT/PVDF networks on LiCoO2 (LCO) and accompanying contact enhancement between LCO and carbon nanotubes (CNTs) resulted in an increase of electrical and mechanical properties of the two types (composites with or without collectors) of electrodes compared with those of additive-free electrodes. Flexibility tests were carried out by rolling electrodes onto cylinder substrates (diameters of ca. 1 and 10 mm); this process resulted in relatively lower resistance changes of the MF copolymer-containing electrodes than for the reference electrodes. In addition, capacity retention after 100 cycles for cells with and without MF copolymers was approximately 10-20% better for the samples with the MF copolymer than for those without. CNT/PVDF networks with MF copolymers were proven to induce a relatively thin and stable cathode electrolyte interface layer accompanying the chemical bond formation during cycling.

4.
ACS Appl Mater Interfaces ; 11(51): 48239-48248, 2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31766842

ABSTRACT

Organic and inorganic one-dimensional nanomaterials were synthesized and combined into a nanocomposite film for a wearable sensor. Reproducible ZnO nanorod (NR) synthesis was achieved by the addition of an appropriate amount of water. Cellulose nanofibers (CNFs) were used due to their porous matrix formation. The interconnected channels of brittle ZnO NRs were well-fabricated in the flexible network of CNFs. The surface morphology, thermal, and mechanical properties of the CNF/ZnO NR nanocomposite film were characterized. The interfacial interactions between these two nanomaterials were also studied. The nanocomposite film is sufficiently flexible so that it shows no electrical resistance changes even after repeated bending tests with a minimum bending radius of 1.5 mm. In addition, ZnO NRs with different lengths were synthesized. The composite of longer ZnO NRs and CNF showed 2.8 × 103 times higher photocurrent and responsivity performance. The humidity sensing performance of the composite was also suggested. The CNF/ZnO NR film shows reasonable electrical signal changes enabling the evaluation of a calibration curve. Finally, a smart band including a CNF/ZnO NR film sensor was fabricated and connected to a smartphone by Bluetooth. These results open an avenue for developing wearable sensors by overcoming the brittleness of inorganic materials.


Subject(s)
Cellulose/chemistry , Nanocomposites/chemistry , Nanofibers/chemistry , Nanotubes/chemistry , Zinc Oxide/chemistry , Tensile Strength , Wearable Electronic Devices , Wireless Technology
5.
ACS Nano ; 13(12): 14357-14367, 2019 Dec 24.
Article in English | MEDLINE | ID: mdl-31755706

ABSTRACT

Design of freestanding electrodes incorporated with redox-active organic materials has been limited by the poor intrinsic electrical conductivity and lack of methodology driving the feasible integration of conductive substrate and the organic molecules. Single-walled carbon nanotube (SWCNT) aerogels, which possess continuous network structure and high surface area, offer a three-dimensional electrically conducting scaffold. Here, we fabricate monolithic organic electrodes by coating a nanometer-scale imide-based network (IBN) that possesses abundant redox-active sites on the 3D SWCNT scaffold. The substantially integrated 3D monolithic organic electrodes sustain high electrical conductance through a 3D electronic pathway in their compressed form (∼21 µm). A thin and controllable layer (<8 nm) of IBN organic materials has a strong adhesion onto the ultra-lightweight and conductive substrate and facilitates multielectron redox reactions to deliver a specific capacity of up to 1550 mA h g-1 (corresponding to the areal capacity of ∼2.8 mA h cm-2). The redox-active IBN in synergy with the 3D SWCNT scaffold can enable superior electrochemical performances compared to the previously reported organic-based electrode architectures and inorganic-based electrodes.

6.
ACS Nano ; 13(10): 11707-11716, 2019 Oct 22.
Article in English | MEDLINE | ID: mdl-31600049

ABSTRACT

Herein, the Cu2P2O7/carbon-nanotube nanocomposite is reported as a cathode material based on a conversion reaction for rechargeable sodium batteries (RSBs). The nanocomposite electrode exhibits the large capacity of 355 mAh g-1, which is consistent with the 4 mol Na+ storage per formula unit determined by first-principles calculation. Its average operation voltage is approximately 2.4 V (vs Na+/Na). Even at 1800 mA g-1, a capacity of 223 mAh g-1 is maintained. Moreover, the composite electrode exhibits acceptable capacity retention of over 75% of the initial capacity for 300 cycles at 360 mA g-1. The overall conversion reaction mechanism on the Cu2P2O7/carbon-nanotube nanocomposite is determined to be Cu2P2O7 + 4Na+ + 4e- → 2Cu + Na4P2O7 based on operando/ex situ structural and physicochemical analyses. The high energy density of the Cu2P2O7/carbon-nanotube nanocomposite (720 Wh kg-1) supported by this conversion chemistry indicates a high possibility of application of this material as a promising cathode candidate for RSBs.

7.
Small ; 14(2)2018 01.
Article in English | MEDLINE | ID: mdl-29171932

ABSTRACT

Na/FeSx batteries have remarkable potential applicability due to their high theoretical capacity and cost-effectiveness. However, realization of high power-capability and long-term cyclability remains a major challenge. Herein, ultrafine Fe7 S8 @C nanocrystals (NCs) as a promising anode material for a Na-ion battery that addresses the above two issues simultaneously is reported. An Fe7 S8 core with quantum size (≈10 nm) overcomes the kinetic and thermodynamic constraints of the Na-S conversion reaction. In addition, the high degree of interconnection through carbon shells improves the electronic transport along the structure. As a result, the Fe7 S8 @C NCs electrode achieves excellent power capability of 550 mA h g-1 (≈79% retention of its theoretical capacity) at a current rate of 2700 mA g-1 . Furthermore, a conformal carbon shell acts as a buffer layer to prevent severe volume change, which provides outstanding cyclability of ≈447 mA h g-1 after 1000 cycles (≈71% retention of the initial charge capacity).

8.
Nano Lett ; 15(8): 5059-67, 2015 Aug 12.
Article in English | MEDLINE | ID: mdl-26177284

ABSTRACT

User safety is one of the most critical issues for the successful implementation of lithium ion batteries (LIBs) in electric vehicles and their further expansion in large-scale energy storage systems. Herein, we propose a novel approach to realize self-extinguishing capability of LIBs for effective safety improvement by integrating temperature-responsive microcapsules containing a fire-extinguishing agent. The microcapsules are designed to release an extinguisher agent upon increased internal temperature of an LIB, resulting in rapid heat absorption through an in situ endothermic reaction and suppression of further temperature rise and undesirable thermal runaway. In a standard nail penetration test, the temperature rise is reduced by 74% without compromising electrochemical performances. It is anticipated that on the strengths of excellent scalability, simplicity, and cost-effectiveness, this novel strategy can be extensively applied to various high energy-density devices to ensure human safety.

9.
Sci Rep ; 3: 3190, 2013 Nov 12.
Article in English | MEDLINE | ID: mdl-24217036

ABSTRACT

Ultrafine, uniform nanostructures with excellent functionalities can be formed by self-assembly of block copolymer (BCP) thin films. However, extension of their geometric variability is not straightforward due to their limited thin film morphologies. Here, we report that unusual and spontaneous positioning between host and guest BCP microdomains, even in the absence of H-bond linkages, can create hybridized morphologies that cannot be formed from a neat BCP. Our self-consistent field theory (SCFT) simulation results theoretically support that the precise registration of a spherical BCP microdomain (guest, B-b-C) at the center of a perforated lamellar BCP nanostructure (host, A-b-B) can energetically stabilize the blended morphology. As an exemplary application of the hybrid nanotemplate, a nanoring-type Ge2Sb2Te5 (GST) phase-change memory device with an extremely low switching current is demonstrated. These results suggest the possibility of a new pathway to construct more diverse and complex nanostructures using controlled blending of various BCPs.

10.
Nanotechnology ; 24(42): 424008, 2013 Oct 25.
Article in English | MEDLINE | ID: mdl-24067596

ABSTRACT

Porous silicon nanowire is fabricated by a simple electrospinning process combined with a magnesium reduction; this material is investigated for use as an anode material for lithium rechargeable batteries. We find that the porous silicon nanowire electrode from the simple and scalable method can deliver a high reversible capacity with an excellent cycle stability. The enhanced performance in terms of cycling stability is attributed to the facile accommodation of the volume change by the pores in the interconnect and the increased electronic conductivity due to a multi-level carbon coating during the fabrication process.

11.
Nanoscale ; 5(16): 7403-9, 2013 Aug 21.
Article in English | MEDLINE | ID: mdl-23827960

ABSTRACT

The fast and accurate identification of unknown liquids is important for the safety and security of human beings. Recently, sensors based on the localized surface plasmon resonance (LSPR) effect demonstrated an outstanding sensitivity in detecting chemical and biological species. In the present study, we suggest that a dual-responsive nanocomposite composed of two polymer brushes and two noble metal nanoparticles provides a significantly improved selectivity (improvement of a factor of 30 in figure-of-merit) for distinguishing diverse liquids compared to a single-responsive LSPR sensor. The dual-responsive LSPR sensor platform was realized by the synergic combinations of two hydrophobic and hydrophilic polymer brushes, which respond differently depending on the degree of interaction between the polymer brushes and the surrounding liquids. Moreover, the mixing ratio of two solvents can also be estimated with high accuracy using the dual-nanocomposite LSPR sensor, suggesting that this approach would be highly practical for in situ process monitoring systems that can instantly detect the change of solvent composition.

12.
Adv Mater ; 24(40): 5452-6, 2012 Oct 23.
Article in English | MEDLINE | ID: mdl-22865826

ABSTRACT

The facile synthesis of silicon nanotubes using a surface sol-gel reaction on pyridine nanowire templates is reported and their performance for energy storage is investigated. Organic-inorganic hybrid pyridine/silica core-shell nanowires prepared using surface sol-gel reaction were converted to silica nanotubes by pyrolysis in air; this was followed by the reduction to silicon nanotubes via magnesiothermic reaction. The electrochemical activity of the obtained silicon nanotubes showed excellent cycle stability, suggesting that the hollow one-dimensional structure would be a good candidate for a high-capacity anode for a lithium ion battery.


Subject(s)
Electric Power Supplies , Nanotubes/chemistry , Silicon/chemistry , Acrylic Resins/chemistry , Electrochemical Techniques , Electrodes , Gels/chemistry , Ions , Lithium/chemistry , Magnesium/chemistry , Nanowires/chemistry , Nanowires/ultrastructure , Oxidation-Reduction , Pyridines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...