Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 245: 118076, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38160977

ABSTRACT

Owing to the ever-increasing generation of plastic waste, the need to develop environmentally friendly disposal methods has increased. This study explored the potential of waste plastic straw to generate valuable light olefins and monocyclic aromatic hydrocarbons (MAHs) via catalytic pyrolysis using high-silica zeolite-based catalysts. HZSM-5 (SiO2/Al2O3:200) exhibited superior performance, yielding more light olefins (49.8 wt%) and a higher MAH content than Hbeta (300). This was attributed to the increased acidity and proper shape selectivity. HZSM-5 displayed better coking resistance (0.7 wt%) than Hbeta (4.4 wt%) by impeding secondary reactions, limiting coke precursor formation. The use of HZSM-5 (80) resulted in higher MAHs and lower light olefins than HZSM-5 (200) because of its higher acidity. Incorporation of Co into HZSM-5 (200) marginally lowered light olefin yield (to 44.0 wt%) while notably enhancing MAH production and boosting propene selectivity within the olefin composition. These observations are attributed to the well-balanced coexistence of Lewis and Brønsted acid sites, which stimulated the carbonium ion mechanism and induced H-transfer, cyclization, Diels-alder, and dehydrogenation reactions. The catalytic pyrolysis of plastic straw over high-silica and metal-loaded HZSM-5 catalysts has been suggested as an efficient and sustainable method for transforming plastic waste materials into valuable light olefins and MAHs.


Subject(s)
Hydrocarbons, Aromatic , Zeolites , Silicon Dioxide , Pyrolysis , Hot Temperature , Biomass , Alkenes , Catalysis , Hydrocarbons
2.
J Nanosci Nanotechnol ; 21(7): 3872-3876, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33715708

ABSTRACT

This study examined the catalytic effects of Al-MCM-41 on the pyrolysis of wood plastic composite via the thermogravimetric analysis (TGA) and model-free kinetic analysis. Al-MCM-41 containing nanopores, with a high BET surface area (633 m²/g) and acidity (SiO2/Al2O3:25), reduced the decomposition temperature of wood and plastic mixtures (PE and PP) in a wood-plastic composite. The average activation energy for the catalytic pyrolysis of wood plastic composite, which was calculated via a model-free kinetic analysis method (Ozawa) of TGA, was also lower at all conversions than those of non-catalytic pyrolysis. This suggests that the pores of Al-MCM-41 and its high cracking efficiency allow the effective diffusion of wood plastic composite components.


Subject(s)
Pyrolysis , Wood , Kinetics , Plastics , Silicon Dioxide , Thermogravimetry
3.
J Nanosci Nanotechnol ; 21(7): 4121-4124, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33715757

ABSTRACT

This study evaluated the feasibility of low-cost nanoporous catalysts, such as dolomite and red mud, on the production of aromatic hydrocarbons via the catalytic pyrolysis of polyethylene terephthalate (PET). Compared to the non-catalytic pyrolysis of PET, catalytic pyrolysis over both dolomite and red mud produced larger amounts of aromatic hydrocarbons owing to their catalytic cracking efficiency and decarboxylation efficiency. Between the two catalysts, red mud, having a larger BET surface area and higher basicity than dolomite, showed higher efficiency for the production of aromatic hydrocarbons.


Subject(s)
Nanopores , Pyrolysis , Catalysis , Hot Temperature , Polyethylene Terephthalates
4.
J Nanosci Nanotechnol ; 16(5): 4647-54, 2016 May.
Article in English | MEDLINE | ID: mdl-27483805

ABSTRACT

Various forms of cobalt oxide (Co3O4 and C0203) were subsequently prepared and tested for decomposition of N2O at low temperature in a fix bed differential reactor at steady state conditions. These different types of oxides were prepared by precipitation method (PM) and by calcination of commercially available CoCO3. Commercially available cobalt oxides C03O4 and C02O3 were also tested for N2O decomposition at different temperatures. All types of prepared and commercially available cobalt oxide were found inactive for N2O decomposition in the presence of oxygen at temperature less than 300 degrees C. Similar unsatisfactory results were found at low temperature N2O decomposition after impregnation of alkali metal (10% Na) and alkaline earth metal (10% Ba) over Co3O4. These catalysts were then reduced under reduction media (H2 gas). It was found that after reduction cobalt oxide catalysts became active for N2O decomposition for short time in the presence of oxygen at low temperature. The reduced form of Co3O4 catalyst showed enormous efficiency i.e., 98% at temperature (300 degrees C) under the same conditions. From results it seems that Co3O4 itself is not active for N2O decomposition but its reduced form is highly active for this reaction due to oxidation state change of C03O4 during reduction process.

5.
J Nanosci Nanotechnol ; 7(11): 3959-63, 2007 Nov.
Article in English | MEDLINE | ID: mdl-18047096

ABSTRACT

Nanoporous zeolite MFI was prepared by using HClO4 as a promoter. A significant proportion of the synthesized zeolite MFI nanoparticles exhibited nanoporous characteristics. Although the synthesis of the zeolite MFI was completed within 6 h, the crystallinity of all the zeolite MFI was shown to be high. The synthesis time of approximately 6 h used in this study was much shorter than the conventional hydrothermal method. The feasibility of the new nanoporous zeolite MFI towards the gas phase catalytic oxidation of a model for dioxin, 1,2-dichlorobenzene, was tested by comparing the catalytic activity of Pt/nanoporous zeolite MFI with that of a Pt/gamma-Al2O3 catalyst. The catalytic activity of the Pt/nanoporous zeolite MFI was higher than that of the Pt/gamma-Al2O3 catalyst. The internal surface area and acidity appears to be a major factor for the decomposition of 1,2-dichlorobenzene.


Subject(s)
Chlorobenzenes/chemistry , Crystallization/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology/methods , Platinum/chemistry , Zeolites/chemistry , Catalysis , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Porosity , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...