Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Soc Nephrol ; 32(11): 2834-2850, 2021 11.
Article in English | MEDLINE | ID: mdl-34716244

ABSTRACT

BACKGROUND: CKD, characterized by retained uremic solutes, is a strong and independent risk factor for thrombosis after vascular procedures . Urem ic solutes such as indoxyl sulfate (IS) and kynurenine (Kyn) mediate prothrombotic effect through tissue factor (TF). IS and Kyn biogenesis depends on multiple enzymes, with therapeutic implications unexplored. We examined the role of indoleamine 2,3-dioxygenase-1 (IDO-1), a rate-limiting enzyme of kynurenine biogenesis, in CKD-associated thrombosis after vascular injury. METHODS: IDO-1 expression in mice and human vessels was examined. IDO-1-/- mice, IDO-1 inhibitors, an adenine-induced CKD, and carotid artery injury models were used. RESULTS: Both global IDO-1-/- CKD mice and IDO-1 inhibitor in wild-type CKD mice showed reduced blood Kyn levels, TF expression in their arteries, and thrombogenicity compared with respective controls. Several advanced IDO-1 inhibitors downregulated TF expression in primary human aortic vascular smooth muscle cells specifically in response to uremic serum. Further mechanistic probing of arteries from an IS-specific mouse model, and CKD mice, showed upregulation of IDO-1 protein, which was due to inhibition of its polyubiquitination and degradation by IS in vascular smooth muscle cells. In two cohorts of patients with advanced CKD, blood IDO-1 activity was significantly higher in sera of study participants who subsequently developed thrombosis after endovascular interventions or vascular surgery. CONCLUSION: Leveraging genetic and pharmacologic manipulation in experimental models and data from human studies implicate IS as an inducer of IDO-1 and a perpetuator of the thrombotic milieu and supports IDO-1 as an antithrombotic target in CKD.


Subject(s)
Indican/physiology , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Indoleamine-Pyrrole 2,3,-Dioxygenase/blood , Kynurenine/physiology , Molecular Targeted Therapy , Postoperative Complications/enzymology , Renal Insufficiency, Chronic/enzymology , Thrombosis/enzymology , Vascular Surgical Procedures/adverse effects , Animals , Aorta , Carotid Artery Injuries/complications , Carotid Artery Thrombosis/etiology , Carotid Artery Thrombosis/prevention & control , Culture Media/pharmacology , Enzyme Induction/drug effects , Feedback, Physiological , Female , HEK293 Cells , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/deficiency , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Kynurenine/blood , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Smooth Muscle/drug effects , Postoperative Complications/blood , Postoperative Complications/etiology , Postoperative Complications/prevention & control , Renal Insufficiency, Chronic/drug therapy , Thromboplastin/metabolism , Thrombosis/blood , Thrombosis/etiology , Thrombosis/prevention & control , Tryptophan/metabolism , Uremia/blood
2.
Kidney Int ; 97(3): 538-550, 2020 03.
Article in English | MEDLINE | ID: mdl-31932072

ABSTRACT

Emerging evidence in animal models of chronic kidney disease (CKD) implicates Aryl Hydrocarbon Receptor (AHR) signaling as a mediator of uremic toxicity. However, details about its tissue-specific and time-dependent activation in response to various renal pathologies remain poorly defined. Here, a comprehensive analysis of AHR induction was conducted in response to discrete models of kidney diseases using a transgenic mouse line expressing the AHR responsive-promoter tethered to a ß-galactosidase reporter gene. Following validation using a canonical AHR ligand (a dioxin derivative), the transgenic mice were subjected to adenine-induced and ischemia/reperfusion-induced injury models representing CKD and acute kidney injury (AKI), respectively, in humans. Indoxyl sulfate was artificially increased in mice through the drinking water and by inhibiting its excretion into the urine. Adenine-fed mice showed a distinct and significant increase in ß-galactosidase in the proximal and distal renal tubules, cardiac myocytes, hepatocytes, and microvasculature in the cerebral cortex. The pattern of ß-galactosidase increase coincided with the changes in serum indoxyl sulfate levels. Machine-learning-based image quantification revealed positive correlations between indoxyl sulfate levels and ß-galactosidase expression in various tissues. This pattern of ß-galactosidase expression was recapitulated in the indoxyl sulfate-specific model. The ischemia/reperfusion injury model showed increase in ß-galactosidase in renal tubules that persisted despite reduction in serum indoxyl sulfate and blood urea nitrogen levels. Thus, our results demonstrate a relationship between AHR activation in various tissues of mice with CKD or AKI and the levels of indoxyl sulfate. This study demonstrates the use of a reporter gene mouse to probe tissue-specific manifestations of uremia in translationally relevant animal models and provide hypothesis-generating insights into the mechanism of uremic toxicity that warrant further investigation.


Subject(s)
Renal Insufficiency, Chronic , Uremia , Animals , Indican , Mice , Mice, Transgenic , Receptors, Aryl Hydrocarbon/genetics , Renal Insufficiency, Chronic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...