Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Org Biomol Chem ; 22(4): 731-734, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38169016

ABSTRACT

Here we report a series of crystal structures (and accompanying biophysical data) of an array of diverse detergent guests bound to an oligourea foldamer helix bundle. These results significantly increase our structural and chemical understanding of aqueous guest recognition by oligourea foldamers and will aid the design of further functionalised oligourea-based self-assemblies.

2.
Angew Chem Int Ed Engl ; 62(39): e202305196, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37309575

ABSTRACT

We introduce a novel cyclic ß-amino acid, trans-(3S,4R)-4-aminotetrahydrothiophene-3-carboxylic acid (ATTC), as a versatile building block for designing peptide foldamers with controlled secondary structures. We synthesized and characterized a series of ß-peptide hexamers containing ATTC using various techniques, including X-ray crystallography, circular dichroism, and NMR spectroscopy. Our findings reveal that ATTC-containing foldamers can adopt 12-helical conformations similar to their isosteres and offer the possibility of fine-tuning their properties via post-synthetic modifications. In particular, chemoselective conjugation strategies demonstrate that ATTC provides unique post-synthetic modification opportunities, which expand their potential applications across diverse research areas. Collectively, our study highlights the versatility and utility of ATTC as an alternative to previously reported cyclic ß-amino acid building blocks in both structural and functional aspects, paving the way for future research in the realm of peptide foldamers and beyond.


Subject(s)
Peptides , Sulfides , Peptides/chemistry , Protein Structure, Secondary , Magnetic Resonance Spectroscopy , Amino Acids/chemistry , Crystallography, X-Ray
3.
Chembiochem ; 24(2): e202200448, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36161687

ABSTRACT

Metal-peptide networks (MPNs), which are assembled from short peptides and metal ions, are considered one of the most fascinating metal-organic coordinated architectures because of their unique and complicated structures. Although MPNs have considerable potential for development into versatile materials, they have not been developed for practical applications because of several underlying limitations, such as designability, stability, and modifiability. In this review, we summarise several important milestones in the development of crystalline MPNs and thoroughly analyse their structural features, such as peptide sequence designs, coordination geometries, cross-linking types, and network topologies. In addition, potential applications such as gas adsorption, guest encapsulation, and chiral recognition are introduced. We believe that this review is a useful survey that can provide insights into the development of new MPNs with more sophisticated structures and novel functions.


Subject(s)
Metals , Peptides , Peptides/chemistry , Metals/chemistry
4.
J Am Chem Soc ; 144(35): 15988-15998, 2022 09 07.
Article in English | MEDLINE | ID: mdl-35998571

ABSTRACT

Amphipathic water-soluble helices formed from synthetic peptides or foldamers are promising building blocks for the creation of self-assembled architectures with non-natural shapes and functions. While rationally designed artificial quaternary structures such as helix bundles have been shown to contain preformed cavities suitable for guest binding, there are no examples of adaptive binding of guest molecules by such assemblies in aqueous conditions. We have previously reported a foldamer 6-helix bundle that contains an internal nonpolar cavity able to bind primary alcohols as guest molecules. Here, we show that this 6-helix bundle can also interact with larger, more complex guests such as n-alkyl glycosides. X-ray diffraction analysis of co-crystals using a diverse set of guests together with solution and gas-phase studies reveals an adaptive binding mode whereby the apo form of the 6-helix bundle undergoes substantial conformational change to accommodate the hydrocarbon chain in a manner reminiscent of glycolipid transfer proteins in which the cavity forms upon lipid uptake. The dynamic nature of the self-assembling and molecular recognition processes reported here marks a step forward in the design of functional proteomimetic molecular assemblies.


Subject(s)
Glycolipids , Water , Glycosides , Peptides/chemistry , Proteins
5.
Chem Commun (Camb) ; 57(75): 9514-9517, 2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34546254

ABSTRACT

We report here an oligourea foldamer able to self-assemble in aqueous conditions into helix bundles of multiple stoichiometries. Importantly, we report crystal structures of several of these stoichiometries, providing a series of high-resolution snap-shots of the structural polymorphism of this foldamer and uncovering a novel self-assembly.


Subject(s)
Urea/chemical synthesis , Crystallography, X-Ray , Models, Molecular , Molecular Structure , Stereoisomerism , Urea/analogs & derivatives , Urea/chemistry , Water/chemistry
6.
Methods Enzymol ; 656: 59-92, 2021.
Article in English | MEDLINE | ID: mdl-34325800

ABSTRACT

N,N'-linked oligoureas are a class of enantiopure, sequence-defined peptidomimetic oligomers without amino acids that form well-defined and predictable helical structures akin to the peptide α-helix. Oligourea-based foldamers combine a number of features-such as synthetic accessibility, sequence modularity, and folding fidelity-that bode well for their use in a range of applications from medicinal chemistry to catalysis. Moreover, it was recently recognized that this synthetic helical backbone can be combined with regular peptides to generate helically folded peptide-oligourea hybrids that display additional features in terms of helix mimicry and protein-surface recognition properties. Here we provide detailed protocols for the preparation of requested monomers and for the synthesis and purification of homo-oligoureas and peptide-oligourea hybrids.


Subject(s)
Peptidomimetics , Urea , Models, Molecular , Peptides , Protein Conformation, alpha-Helical
7.
Chempluschem ; 85(10): 2243-2250, 2020 10.
Article in English | MEDLINE | ID: mdl-32697049

ABSTRACT

There is considerable interest in the rational design of controllable, bioinspired supramolecular systems as a potential means to create new biocompatible and functional materials able to mimic and build upon the characteristics of natural biopolymers. Here, the alcohol-controlled aqueous self-assembly of an amphiphilic helical oligourea foldamer (artificial folded oligomer) into a diverse array of tubular fibril architectures is reported. Electron microscopy studies provide details of the morphological evolution of the foldamer nanostructures from protofibrils to fibers, with high resolution X-ray crystal structures providing an atomic-scale view of these assemblies, and solution studies indicating the assembly and morphology to be affected by alcohol polarity and concentration. Overall, the results reported here highlight oligourea foldamers as suitable building blocks for the formation of a diverse range of tubular morphologies in a controllable manner.

8.
Acc Chem Res ; 50(4): 832-841, 2017 04 18.
Article in English | MEDLINE | ID: mdl-28191927

ABSTRACT

The wide range of fascinating supramolecular architectures found in nature, from DNA double helices to giant protein shells, inspires researchers to mimic the diverse shapes and functions of natural systems. Thus, a variety of artificial molecular platforms have been developed by assembling DNA-, peptide-, and protein-based building blocks for medicinal and biological applications. There has also been a significant interest in the research of non-natural oligomers (i.e., foldamers) that fold into well-defined secondary structures analogous to those found in proteins, because the assemblies of foldamers are expected not only to form biomimetic supramolecular architectures that resemble those of nature but also to display unique functions and unprecedented topologies at the same time due to their different folding propensities from those of natural building blocks. Foldamer-based supramolecular architectures have been reported in the form of nanofibers, nanochannels, nanosheets, and finite three-dimensional (3D) shapes. We have developed a new class of crystalline peptidic materials termed "foldectures" (a compound of foldamer and architecture) with unprecedented topological complexity derived from the rapid and nonequilibrium aqueous phase self-assembly of foldamers. In this Account, we discuss the morphological features, molecular packing structures, physical properties, and potential applications of foldectures. Foldectures exhibit well-defined, microscale, homogeneous, and finite structures with unique morphologies such as windmill, tooth, and trigonal bipyramid shapes. The symmetry elements of the morphologies vary with the foldamer building blocks and are retained upon surfactant-assisted shape evolution. Structural characterization by powder X-ray diffraction (PXRD) revealed the molecular packing structures, suggesting how the foldamer building blocks assembled in the 3D structure. The analysis by PXRD showed that intermolecular hydrogen bonding connects foldamers in head-to-tail fashion, while hydrophobic attraction plays a role in arranging foldamers in parallel, antiparallel, or cholesteric phase-like manners. Each packing structure from the foldamer building blocks possesses distinct symmetry elements that are directly expressed in the 3D morphologies. Because of their well-ordered molecular packing structures, foldectures exhibit facet-dependent surface characteristics and anisotropic magnetic susceptibility. The facet-dependent surface property was harnessed to synthesize anisotropic metal nanoparticle-foldecture composites, and the anisotropic magnetic susceptibility enables foldectures to undergo real-time alignment and rotating motion in response to an external magnetic field. By means of their unusual shapes and properties, foldectures have been demonstrated to mimic the functionality of natural systems such as magnetosomes or carboxysomes. Further development of foldectures using higher-order building units, complicated packing motifs, and functional moieties could provide a novel biocompatible platform rivaling 3D biological architectures in natural systems.


Subject(s)
Peptides/chemistry , Magnetospirillum/chemistry , Models, Molecular , Particle Size , Peptides/metabolism , Powder Diffraction , Protein Conformation , Protein Folding
9.
Nat Commun ; 6: 8747, 2015 Oct 29.
Article in English | MEDLINE | ID: mdl-26510658

ABSTRACT

The design of stimuli-responsive self-assembled molecular systems capable of undergoing mechanical work is one of the most important challenges in synthetic chemistry and materials science. Here we report that foldectures, that is, self-assembled molecular architectures of ß-peptide foldamers, uniformly align with respect to an applied static magnetic field, and also show instantaneous orientational motion in a dynamic magnetic field. This response is explained by the amplified anisotropy of the diamagnetic susceptibilities as a result of the well-ordered molecular packing of the foldectures. In addition, the motions of foldectures at the microscale can be translated into magnetotactic behaviour at the macroscopic scale in a way reminiscent to that of magnetosomes in magnetotactic bacteria. This study will provide significant inspiration for designing the next generation of biocompatible peptide-based molecular machines with applications in biological systems.


Subject(s)
Peptides/chemistry , Magnetic Fields , Magnetosomes/chemistry , Magnetosomes/metabolism , Peptides/metabolism , Protein Conformation , Protein Folding
10.
J Am Chem Soc ; 137(6): 2159-62, 2015 Feb 18.
Article in English | MEDLINE | ID: mdl-25636150

ABSTRACT

The synthesis of microscale, polyhedrally shaped, soft materials with anisotropic surface functionality by a bottom-up approach remains a significant challenge. Herein we report a microscale molecular architecture (foldecture) with facet-dependent surface characteristics that can potentially serve as a well-defined catalytic template. Rhombic rod shaped foldectures with six facets were obtained by the aqueous self-assembly of helical ß-peptide foldamers with a C-terminal carboxylic acid. An analysis of the molecular packing by X-ray diffraction revealed that carboxylic acid groups were exposed exclusively on the two (001) rhombic facets due to antiparallel packing of the helical peptides. A surface energy calculation by molecular dynamics simulation was performed to provide a plausible explanation for the development of anisotropy during foldecture formation. The expected facet-selective surface properties of the foldecture were experimentally confirmed by selective deposition of metal nanoparticles on the (001) facets, leading to a new class of sequentially constructed, heterogeneous "foldecture core" materials.


Subject(s)
Protein Conformation , Crystallography, X-Ray , Surface Properties
11.
J Am Chem Soc ; 133(44): 17618-21, 2011 Nov 09.
Article in English | MEDLINE | ID: mdl-21985392

ABSTRACT

Molecular self-assembly is the spontaneous association of molecules into structured aggregates by which nature builds complex functional systems. While numerous examples have focused on 2D self-assembly to understand the underlying mechanism and mimic this process to create artificial nano- and microstructures, limited progress has been made toward 3D self-assembly on the molecular level. Here we show that a helical ß-peptide foldamer, an artificial protein fragment, with well-defined secondary structure self-assembles to form an unprecedented 3D molecular architecture with a molar tooth shape in a controlled manner in aqueous solution. Powder X-ray diffraction analysis, combined with global optimization and Rietveld refinement, allowed us to propose its molecular arrangement. We found that four individual left-handed helical monomers constitute a right-handed superhelix in a unit cell of the assembly, similar to that found in the supercoiled structure of collagen.


Subject(s)
Peptides/chemical synthesis , Models, Molecular , Particle Size , Peptides/chemistry , Protein Folding
SELECTION OF CITATIONS
SEARCH DETAIL
...