Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 799, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38280855

ABSTRACT

Three-dimensional human intestinal organoids (hIO) are widely used as a platform for biological and biomedical research. However, reproducibility and challenges for large-scale expansion limit their applicability. Here, we establish a human intestinal stem cell (ISC) culture method expanded under feeder-free and fully defined conditions through selective enrichment of ISC populations (ISC3D-hIO) within hIO derived from human pluripotent stem cells. The intrinsic self-organisation property of ISC3D-hIO, combined with air-liquid interface culture in a minimally defined medium, forces ISC3D-hIO to differentiate into the intestinal epithelium with cellular diversity, villus-like structure, and barrier integrity. Notably, ISC3D-hIO is an ideal cell source for gene editing to study ISC biology and transplantation for intestinal diseases. We demonstrate the intestinal epithelium differentiated from ISC3D-hIO as a model system to study severe acute respiratory syndrome coronavirus 2 viral infection. ISC3D-hIO culture technology provides a biological tool for use in regenerative medicine and disease modelling.


Subject(s)
Intestines , Pluripotent Stem Cells , Humans , Reproducibility of Results , Intestinal Mucosa , Organoids , Cell Differentiation
SELECTION OF CITATIONS
SEARCH DETAIL
...