Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37905949

ABSTRACT

The Materials Genome Initiative (MGI) seeks to accelerate the discovery and engineering of advanced materials via high-throughput experimentation (HTE), which is a challenging task, given the common trade-off between design for optimal processability vs performance. Here, we report a HTE method based on automated formulation, synthesis, and multiproperty characterization of bulk soft materials in well plate formats that enables accelerated engineering of functional composite hydrogels with optimized properties for processability and performance. The method facilitates rapid high-throughput screening of hydrogel composition-property relations for multiple properties in well plate formats. The feasibility and utility of the method were demonstrated by application to several functional composite hydrogel systems, including alginate/poly(N-isopropylacrylamide) (PNIPAM) and poly(ethylene glycol) dimethacrylate (PEGDMA)/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) hydrogels. The HTE method was leveraged to identify formulations of conductive PEGDMA/PEDOT:PSS composite hydrogels for optimized performance and processability in three-dimensional (3D) printing. This work provides an advance in experimental methods based on automated dispensing, mixing, and sensing for the accelerated engineering of soft functional materials.

2.
Biomacromolecules ; 24(6): 2596-2605, 2023 06 12.
Article in English | MEDLINE | ID: mdl-37262428

ABSTRACT

Site-specific modification is a great challenge for polysaccharide scientists. Chemo- and regioselective modification of polysaccharide chains can provide many useful natural-based materials and help us illuminate fundamental structure-property relationships of polysaccharide derivatives. The hemiacetal reducing end of a polysaccharide is in equilibrium with its ring-opened aldehyde form, making it the most uniquely reactive site on the polysaccharide molecule, ideal for regioselective decoration such as imine formation. However, all natural polysaccharides, whether they are branched or not, have only one reducing end per chain, which means that only one aldehyde-reactive substituent can be added. We introduce a new approach to selective functionalization of polysaccharides as an entrée to useful materials, appending multiple reducing ends to each polysaccharide molecule. Herein, we reduce the approach to practice using amide formation. Amine groups on monosaccharides such as glucosamine or galactosamine can react with carboxyl groups of polysaccharides, whether natural uronic acids like alginates, or derivatives with carboxyl-containing substituents such as carboxymethyl cellulose (CMC) or carboxymethyl dextran (CMD). Amide formation is assisted using the coupling agent 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM). By linking the C2 amines of monosaccharides to polysaccharides in this way, a new class of polysaccharide derivatives possessing many reducing ends can be obtained. We refer to this class of derivatives as multi-reducing-end polysaccharides (MREPs). This new family of derivatives creates the potential for designing polysaccharide-based materials with many potential applications, including in hydrogels, block copolymers, prodrugs, and as reactive intermediates for other derivatives.


Subject(s)
Alginates , Polysaccharides , Polysaccharides/chemistry , Alginates/chemistry , Monosaccharides , Aldehydes , Amides
SELECTION OF CITATIONS
SEARCH DETAIL
...