Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 151
Filter
1.
Int J Mol Sci ; 25(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38892403

ABSTRACT

Bakanae disease (BD), caused by the fungal pathogen Fusarium fujikuroi, is a serious threat to rice production worldwide. Breeding elite rice varieties resistant to BD requires the identification of resistance genes. Previously, we discovered a resistant quantitative trait locus (QTL), qFfR1, in a Korean japonica rice variety, Nampyeong. In this study, we fine-mapped qFfR1 with a Junam*4/Nampyeong BC3F3 population and delimited its location to a 37.1 kb region on chromosome 1. Complementation experiments with seven candidate genes in this region revealed that OsI_02728 is the gene for qFfR1. This gene encodes a protein with a typical leucine-rich repeat (LRR) receptor-like protein structure. RNA-sequencing-based transcriptomic analysis revealed that FfR1 induces the transcription of defense genes, including lignin and terpenoid biosynthesis genes, pathogenesis-related genes, and thionin genes. These results may facilitate investigations into the molecular mechanisms underlying BD resistance, including molecular patterns of Fusarium fujikuroi interacting with FfR1 and players working in signal transduction pathways downstream of FfR1, and the breeding of new BD-resistant varieties by providing a BD resistance gene with its precise selection marker. This will contribute to efficient control of BD, which is becoming more prevalent according to temperature rises due to climate change.


Subject(s)
Chromosome Mapping , Disease Resistance , Fusarium , Oryza , Plant Diseases , Quantitative Trait Loci , Oryza/genetics , Oryza/microbiology , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Fusarium/pathogenicity , Cloning, Molecular , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Chromosomes, Plant/genetics
2.
Nat Commun ; 15(1): 2732, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38548760

ABSTRACT

Fe‒S cluster-harboring enzymes, such as carbon monoxide dehydrogenases (CODH), employ sophisticated artificial electron mediators like viologens to serve as potent biocatalysts capable of cleaning-up industrial off-gases at stunning reaction rates. Unraveling the interplay between these enzymes and their associated mediators is essential for improving the efficiency of CODHs. Here we show the electron mediator-interaction site on ChCODHs (Ch, Carboxydothermus hydrogenoformans) using a systematic approach that leverages the viologen-reactive characteristics of superficial aromatic residues. By enhancing mediator-interaction (R57G/N59L) near the D-cluster, the strategically tailored variants exhibit a ten-fold increase in ethyl viologen affinity relative to the wild-type without sacrificing the turn-over rate (kcat). Viologen-complexed structures reveal the pivotal positions of surface phenylalanine residues, serving as external conduits for the D-cluster to/from viologen. One variant (R57G/N59L/A559W) can treat a broad spectrum of waste gases (from steel-process and plastic-gasification) containing O2. Decoding mediator interactions will facilitate the development of industrially high-efficient biocatalysts encompassing gas-utilizing enzymes.


Subject(s)
Electrons , Multienzyme Complexes , Multienzyme Complexes/chemistry , Aldehyde Oxidoreductases/genetics , Aldehyde Oxidoreductases/chemistry , Gases , Viologens , Carbon Monoxide/chemistry
3.
Proc Natl Acad Sci U S A ; 120(28): e2301934120, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37399373

ABSTRACT

E3 ubiquitin ligase Mdm2 facilitates ß-arrestin ubiquitination, leading to the internalization of G protein-coupled receptors (GPCRs). In this process, ß-arrestins bind to Mdm2 and recruit it to the receptor; however, the molecular architecture of the ß-arrestin-Mdm2 complex has not been elucidated yet. Here, we identified the ß-arrestin-binding region (ABR) on Mdm2 and solved the crystal structure of ß-arrestin1 in complex with Mdm2ABR peptide. The acidic residues of Mdm2ABR bind to the positively charged concave side of the ß-arrestin1 N-domain. The C-tail of ß-arrestin1 is still bound to the N-domain, indicating that Mdm2 binds to the inactive state of ß-arrestin1, whereas the phosphorylated C-terminal tail of GPCRs binds to activate ß-arrestins. The overlapped binding site of Mdm2 and GPCR C-tails on ß-arrestin1 suggests that the binding of GPCR C-tails might trigger the release of Mdm2. Moreover, hydrogen/deuterium exchange experiments further show that Mdm2ABR binding to ß-arrestin1 induces the interdomain interface to be more dynamic and uncouples the IP6-induced oligomer of ß-arrestin1. These results show how the E3 ligase, Mdm2, interacts with ß-arrestins to promote the internalization of GPCRs.


Subject(s)
Arrestins , Ubiquitin-Protein Ligases , beta-Arrestins/metabolism , Ubiquitin-Protein Ligases/metabolism , Arrestins/metabolism , beta-Arrestin 1/metabolism , Ubiquitination , Receptors, G-Protein-Coupled/metabolism , beta-Arrestin 2/metabolism , Phosphorylation
4.
Microbiol Resour Announc ; 12(6): e0134522, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37125915

ABSTRACT

Ralstonia solanacearum is a bacterial wilt pathogen of Solanum lycopersicum. Its pathogenicity is the result of coevolution during continuous interaction with its host plants under given biotic and abiotic environments. To elucidate clues for pathogenicity of our WR-1 strain, its genome sequence was analyzed.

5.
Microbiol Resour Announc ; 12(5): e0094222, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37129504

ABSTRACT

Ralstonia pseudosolanacearum is a member of the Ralstonia solanacearum species complex (RSSC), which is composed of three species and diverse subspecific groups. Some strains cause bacterial wilt in Solanum lycopersicum; others are beneficial for their hosts. Herein, we present the complete genome sequence of an RSSC strain, Sw698, beneficial for S. lycopersicum growth.

6.
Microbiol Resour Announc ; 12(2): e0088322, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36688649

ABSTRACT

Ralstonia solanacearum is a notorious pathogen of bacterial wilt on Solanum lycopersicum. Most isolates from diseased tomato tissues are biovar 3, and their genomes are publicly available; however, information on biovar 4 strains is limited. Here, the complete genome sequence of R. solanacearum Bs715, a biovar 4 strain, is presented.

7.
Nucleic Acids Res ; 50(15): 8929-8946, 2022 08 26.
Article in English | MEDLINE | ID: mdl-35920317

ABSTRACT

Although both the p53 and forkhead box (FOX) family proteins are key transcription factors associated with cancer progression, their direct relationship is unknown. Here, we found that FOX family proteins bind to the non-canonical homotypic cluster of the p53 promoter region (TP53). Analysis of crystal structures of FOX proteins (FOXL2 and FOXA1) bound to the p53 homotypic cluster indicated that they interact with a 2:1 stoichiometry accommodated by FOX-induced DNA allostery. In particular, FOX proteins exhibited distinct dimerization patterns in recognition of the same p53-DNA; dimer formation of FOXA1 involved protein-protein interaction, but FOXL2 did not. Biochemical and biological functional analyses confirmed the cooperative binding of FOX proteins to the TP53 promoter for the transcriptional activation of TP53. In addition, up-regulation of TP53 was necessary for FOX proteins to exhibit anti-proliferative activity in cancer cells. These analyses reveal the presence of a discrete characteristic within FOX family proteins in which FOX proteins regulate the transcription activity of the p53 tumor suppressor via cooperative binding to the TP53 promoter in alternative dimer configurations.


Subject(s)
Forkhead Box Protein L2/metabolism , Forkhead Transcription Factors , Hepatocyte Nuclear Factor 3-alpha/metabolism , Tumor Suppressor Protein p53/genetics , Forkhead Transcription Factors/metabolism , Humans , Promoter Regions, Genetic , Tumor Suppressor Protein p53/metabolism
8.
Comput Biol Chem ; 99: 107725, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35850050

ABSTRACT

The Niemann-Pick type C1 (NPC1) protein is one of the key players of cholesterol trafficking from the lysosome and its function is closely coupled with the Niemann-Pick type C2 (NPC2) protein. The dysfunction of one of these proteins can cause problems in the overall cholesterol homeostasis and leads to a disease, which is called the Niemann-Pick type C (NPC) disease. The parts of the cholesterol transport mechanism by NPC1 have begun to recently emerge, especially after the full-length NPC1 structure was determined from a cryo-EM study. However, many details about the overall cholesterol trafficking process by NPC1 still remain to be elucidated. Notably, the NPC1 could act as one of the target proteins for the control of infectious diseases due to its role as the virus entry point into the cells as well as for cancer treatment due to the inhibitory effect of tumor growth. A mutation of NPC1 can leads to dysfunctions and understanding this process can provide valuable insights into the mechanisms of the corresponding protein and the therapeutic strategies against the disease that are caused by the mutation. It has been found that patients with the point mutation R518W (or R518Q) on the NPC1 show the accumulation of lipids within the lysosomal lumen. In this paper, we report how the corresponding mutation can affect the cholesterol transport process by NPC1 in the different stages by the molecular dynamics simulations. The simulation results show that the point mutation intervenes at least at two different steps during the cholesterol transport by NPC1 and NPC2 in combination, which includes the association step of NPC2 with the NPC1, the cholesterol transfer step from NPC2 to NPC1-NTD while the cholesterol passage within the NPC1 via a channel is relatively unaffected by R518W mutation. The detailed analysis of the resulting simulation trajectories reveals the important structural features that are essential for the proper functioning of the NPC1 for the cholesterol transport, and it shows how the overall structure, which thereby includes the function, can be affected by a single mutation.


Subject(s)
Molecular Dynamics Simulation , Point Mutation , Carrier Proteins/chemistry , Cholesterol/chemistry , Cholesterol/metabolism , Glycoproteins/chemistry , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Membrane Proteins/metabolism , Mutation , Niemann-Pick C1 Protein/genetics , Niemann-Pick C1 Protein/metabolism , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
9.
Commun Biol ; 5(1): 395, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35484224

ABSTRACT

The spiral shape of intestinal pathogen Campylobacter jejuni is critical for invasion of intestinal mucosa epithelial cells. Insofar as this cell morphology plays a role in the pathology of C. jejuni infection, its restructuring by pharmacological intervention could be an unexplored means to prevention of infection. We recently described that peptidoglycan hydrolase 3 (Pgp3) is involved in the spiral-shape formation of C. jejuni. We report herein the design and synthesis of the hydroxamate-based inhibitors targeting Pgp3. C. jejuni cells exposed to these inhibitors changed from the helical- to rod-shaped morphology, comparable to the case of the pgp3-deletion mutant. Evidence for the mechanism of action was provided by crystal structures of Pgp3 in complex with inhibitors, shedding light into the binding modes of inhibitors within the active site, supported by kinetics and molecular-dynamics simulations. C. jejuni exposed to these inhibitors underwent the morphological change from helical- to rod-shaped bacteria, an event that reduce the ability for invasion of the host cells. This proof of concept suggests that alteration of morphology affects the interference with the bacterial infection.


Subject(s)
Campylobacter Infections , Campylobacter jejuni , Campylobacter Infections/metabolism , Campylobacter Infections/microbiology , Campylobacter jejuni/metabolism , Epithelial Cells/metabolism , Humans , Intestinal Mucosa/metabolism , Intestines
10.
Acta Crystallogr D Struct Biol ; 78(Pt 4): 424-434, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35362466

ABSTRACT

D-Alanylation of the teichoic acids of the Gram-positive bacterial cell wall plays crucial roles in bacterial physiology and virulence. Deprivation of D-alanine from the teichoic acids of Staphylococcus aureus impairs biofilm and colony formation, induces autolysis and ultimately renders methicillin-resistant S. aureus highly susceptible to antimicrobial agents and host defense peptides. Hence, the D-alanylation pathway has emerged as a promising antibacterial target against drug-resistant S. aureus. D-Alanylation of teichoic acids is mediated via the action of four proteins encoded by the dlt operon, DltABCD, all four of which are essential for the process. In order to develop novel antimicrobial agents against S. aureus, the D-alanyl carrier protein ligase DltA, which is the first protein in the D-alanylation pathway, was focused on. Here, the crystal structure of DltA from the methicillin-resistant S. aureus strain Mu50 is presented, which reveals the unique molecular details of the catalytic center and the role of the P-loop. Kinetic analysis shows that the enantioselectivity of S. aureus DltA is much higher than that of DltA from other species. In the presence of DltC, the enzymatic activity of DltA is increased by an order of magnitude, suggesting a new exploitable binding pocket. This discovery may pave the way for a new generation of treatments for drug-resistant S. aureus.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcus aureus , Bacterial Proteins/chemistry , Carrier Proteins/metabolism , Kinetics , Ligases , Methicillin-Resistant Staphylococcus aureus/metabolism
11.
Nucleic Acids Res ; 50(4): 2319-2333, 2022 02 28.
Article in English | MEDLINE | ID: mdl-35141752

ABSTRACT

Staphylococcus aureus is a notorious and globally distributed pathogenic bacterium. New strategies to develop novel antibiotics based on intrinsic bacterial toxin-antitoxin (TA) systems have been recently reported. Because TA systems are present only in bacteria and not in humans, these distinctive systems are attractive targets for developing antibiotics with new modes of action. S. aureus PemIK is a type II TA system, comprising the toxin protein PemK and the labile antitoxin protein PemI. Here, we determined the crystal structures of both PemK and the PemIK complex, in which PemK is neutralized by PemI. Our biochemical approaches, including fluorescence quenching and polarization assays, identified Glu20, Arg25, Thr48, Thr49, and Arg84 of PemK as being important for RNase function. Our study indicates that the active site and RNA-binding residues of PemK are covered by PemI, leading to unique conformational changes in PemK accompanied by repositioning of the loop between ß1 and ß2. These changes can interfere with RNA binding by PemK. Overall, PemK adopts particular open and closed forms for precise neutralization by PemI. This structural and functional information on PemIK will contribute to the discovery and development of novel antibiotics in the form of peptides or small molecules inhibiting direct binding between PemI and PemK.


Subject(s)
Antitoxins , Staphylococcus aureus , Anti-Bacterial Agents/metabolism , Antitoxins/genetics , Antitoxins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , RNA/metabolism , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism
12.
Prev Nutr Food Sci ; 27(4): 407-413, 2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36721747

ABSTRACT

Sinapic acid (SA), a hydroxycinnamic acid, is known to confer protection against oxidative stress, inflammation, diabetes, and liver disease. However, the effectiveness of SA in improving obesity remains obscure. Therefore, this study evaluated anti-obesity efficacy of SA and to elucidate its mechanism of action. Male mice were maintained for 16 weeks on high-fat diet (HFD) alone or with SA (0.004%, w/w) and bodyweight, fat mass, adipocyte size, food intake, and biochemical and molecular markers were evaluated. SA-supplemented mice demonstrated markedly decreased fat mass and adipocyte size compared to unsupplemented group, without any changes in bodyweight and food intake between the two groups. Plasma adipocytokines levels including leptin, resistin, monocyte chemoattractant protein (MCP)-1 and interleukin-6 were also markedly reduced by SA supplementation. SA tended to lower plasma insulin level and improved homeostatic index of insulin resistance and intraperitoneal glucose tolerance test in HFD-induced obese mice. The anti-adiposity effect of SA was maybe owing to down-regulation of the mRNA expression of lipogenic genes, including acetyl coenzyme A (CoA) carboxylase, fatty acid synthesis, stearoyl-CoA desaturase 1, and phosphatidate phosphatase, and peroxisome proliferator-activated receptor γ, a transcription factor responsible for governing lipid metabolism, in adipose tissues. SA significantly down-regulated pro-inflammatory nuclear factor kappa B, MCP-1, tumor necrosis factor-α, and Toll-like receptor 4 mRNA expression in adipose tissue. Thus, SA could be beneficial for the development of functional foods or herbal medications to combat obesity.

13.
Acta Crystallogr D Struct Biol ; 77(Pt 11): 1460-1474, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34726173

ABSTRACT

The initiation of infection of host tissues by Staphylococcus aureus requires a family of staphylococcal adhesive proteins containing serine-aspartate repeat (SDR) domains, such as ClfA. The O-linked glycosylation of the long-chain SDR domain mediated by SdgB and SdgA is a key virulence factor that protects the adhesive SDR proteins against host proteolytic attack in order to promote successful tissue colonization, and has also been implicated in staphylococcal agglutination, which leads to sepsis and an immunodominant epitope for a strong antibody response. Despite the biological significance of these two glycosyltransferases involved in pathogenicity and avoidance of the host innate immune response, their structures and the molecular basis of their activity have not been investigated. This study reports the crystal structures of SdgB and SdgA from S. aureus as well as multiple structures of SdgB in complex with its substrates (for example UDP, N-acetylglucosamine or SDR peptides), products (glycosylated SDR peptides) or phosphate ions. Together with biophysical and biochemical analyses, this structural work uncovered the novel mechanism by which SdgB and SdgA carry out the glycosyl-transfer process to the long SDR region in SDR proteins. SdgB undergoes dynamic changes in its structure such as a transition from an open to a closed conformation upon ligand binding and takes diverse forms, both as a homodimer and as a heterodimer with SdgA. Overall, these findings not only elucidate the putative role of the three domains of SdgB in recognizing donor and acceptor substrates, but also provide new mechanistic insights into glycosylation of the SDR domain, which can serve as a starting point for the development of antibacterial drugs against staphylococcal infections.


Subject(s)
Staphylococcus aureus , Humans , Crystallography, X-Ray , Glycosylation , Models, Molecular , Protein Conformation , Staphylococcal Infections/microbiology , Staphylococcus aureus/chemistry , Staphylococcus aureus/metabolism , Substrate Specificity , Virulence Factors/chemistry , Virulence Factors/metabolism
14.
EMBO Mol Med ; 13(10): e13790, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34486824

ABSTRACT

Alopecia induced by aging or side effects of medications affects millions of people worldwide and impairs the quality of life; however, there is a limit to the current medications. Here, we identify a small transdermally deliverable 5-mer peptide (GLYYF; P5) that activates adiponectin receptor 1 (AdipoR1) and promotes hair growth. P5 sufficiently reproduces the biological effect of adiponectin protein via AMPK signaling pathway, increasing the expression of hair growth factors in the dermal papilla cells of human hair follicle. P5 accelerates hair growth ex vivo and induces anagen hair cycle in mice in vivo. Furthermore, we elucidate a key spot for the binding between AdipoR1 and adiponectin protein using docking simulation and mutagenesis studies. This study suggests that P5 could be used as a topical peptide drug for alleviating pathological conditions, which can be improved by adiponectin protein, such as alopecia.


Subject(s)
Hair Follicle , Quality of Life , Alopecia/drug therapy , Animals , Hair , Mice , Signal Transduction
15.
Biomed Pharmacother ; 142: 111969, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34333285

ABSTRACT

p-Coumaric acid (PC), a naturally occurring phytochemical, possesses antioxidant and anti-inflammatory properties; however, the mechanisms underlying its protective effects against obesity-related metabolic dysfunction are largely unknown. Here, we treated C57BL/6J mice to a high-fat diet (HFD) with or without PC (10 mg/kg body weight/day) for 16 weeks to determine whether PC ameliorates HFD-induced obesity, insulin resistance, inflammation, and non-alcoholic fatty liver disease (NAFLD). We found no significant differences in food intake and body weight between the groups. However, PC-treated mice showed significantly lower white adipose tissue (WAT) weight, adipocyte size, and plasma leptin level, which were associated with decreased lipogenic enzyme activity and mRNA expression of their genes in the epididymal WAT. Moreover, hepatic lipogenic enzymes activities and expression of their genes and proteins were decreased with concomitant increases in hepatic fatty acid oxidation and mRNA expression of its gene; fecal lipid excretion was significantly increased, resulting in decreased liver weight, hepatic lipid levels, lipid droplet accumulation, and plasma aspartate aminotransferase and lipid levels. Additionally, PC-treated mice showed lower fasting blood glucose, plasma resistin, and MCP-1 levels, HOMA-IR, and mRNA expression of inflammatory genes in the epididymal WAT and liver. Our findings reveal potential mechanisms underlying the action of PC against HFD-induced adiposity, NAFLD, and other metabolic disturbances.


Subject(s)
Coumaric Acids/pharmacology , Inflammation/prevention & control , Non-alcoholic Fatty Liver Disease/prevention & control , Obesity/prevention & control , Adiposity/drug effects , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Blood Glucose/drug effects , Diet, High-Fat/adverse effects , Insulin Resistance , Male , Mice , Mice, Inbred C57BL , Resistin/blood
16.
Health Sci Rep ; 4(3): e320, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34250272

ABSTRACT

BACKGROUND: Older adults-classified as a high-risk group-are highly likely to experience increased loneliness due to the implementation of various policies designed to prevent the spread of COVID-19. Accordingly, this study aims to examine the effects of a pilot social prescribing project for elderly people in rural area of South Korea during the COVID-19 pandemic. METHODS: Using the PRECEDE-PROCEED model, the effectiveness of the pilot project was verified through pre- and post-impact and outcome evaluation. RESULTS: According to the results of the impact evaluation, loneliness reduced significantly, while the social participation attitude score increased. Although the average score of self-efficacy increased, it was not statistically significant. Moreover, it was found that self-esteem increased significantly. In the outcome evaluation, depression reduced considerably. CONCLUSION: To conclude, the pilot social prescribing project was effective in reducing depression and loneliness for the elderly in rural areas of Korea. It was also confirmed that there is potential to develop a new health promotion project that can improve the self-esteem of the elderly, and expand their social activities. Second, the pilot project was carried out in an integrated manner by utilizing resources in communities with good accessibility. Therefore, it is expected to be used as a new "Integrated community care model" to improve the mental health of the elderly in rural areas. Third, during the COVID-19 pandemic, the elderly tend to experience increasing feelings of depression, isolation, and loneliness due to "social distancing." Therefore, it is expected that social prescribing programs for the elderly in rural areas would become a new alternative for relieve mental disorder of the seniors.

17.
EMBO Rep ; 22(6): e51323, 2021 06 04.
Article in English | MEDLINE | ID: mdl-33938112

ABSTRACT

In eukaryotic cells, mitochondria are closely tethered to the endoplasmic reticulum (ER) at sites called mitochondria-associated ER membranes (MAMs). Ca2+ ion and phospholipid transfer occurs at MAMs to support diverse cellular functions. Unlike those in yeast, the protein complexes involved in phospholipid transfer at MAMs in humans have not been identified. Here, we determine the crystal structure of the tetratricopeptide repeat domain of PTPIP51 (PTPIP51_TPR), a mitochondrial protein that interacts with the ER-anchored VAPB protein at MAMs. The structure of PTPIP51_TPR shows an archetypal TPR fold, and an electron density map corresponding to an unidentified lipid-like molecule probably derived from the protein expression host is found in the structure. We reveal functions of PTPIP51 in phospholipid binding/transfer, particularly of phosphatidic acid, in vitro. Depletion of PTPIP51 in cells reduces the mitochondrial cardiolipin level. Additionally, we confirm that the PTPIP51-VAPB interaction is mediated by the FFAT-like motif of PTPIP51 and the MSP domain of VAPB. Our findings suggest that PTPIP51 is a phospholipid transfer protein with a MAM-tethering function.


Subject(s)
Calcium , Phospholipids , Calcium/metabolism , Endoplasmic Reticulum/metabolism , Humans , Mitochondria/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Phospholipids/metabolism , Protein Tyrosine Phosphatases
18.
Sci Rep ; 11(1): 5350, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33674636

ABSTRACT

Although computer-aided diagnosis (CAD) is used to improve the quality of diagnosis in various medical fields such as mammography and colonography, it is not used in dermatology, where noninvasive screening tests are performed only with the naked eye, and avoidable inaccuracies may exist. This study shows that CAD may also be a viable option in dermatology by presenting a novel method to sequentially combine accurate segmentation and classification models. Given an image of the skin, we decompose the image to normalize and extract high-level features. Using a neural network-based segmentation model to create a segmented map of the image, we then cluster sections of abnormal skin and pass this information to a classification model. We classify each cluster into different common skin diseases using another neural network model. Our segmentation model achieves better performance compared to previous studies, and also achieves a near-perfect sensitivity score in unfavorable conditions. Our classification model is more accurate than a baseline model trained without segmentation, while also being able to classify multiple diseases within a single image. This improved performance may be sufficient to use CAD in the field of dermatology.


Subject(s)
Diagnosis, Computer-Assisted/methods , Image Processing, Computer-Assisted/methods , Skin Diseases/diagnostic imaging , Humans , Software
19.
BMB Rep ; 54(5): 266-271, 2021 May.
Article in English | MEDLINE | ID: mdl-33612148

ABSTRACT

Estrogen-related receptor γ (ERRγ), a member of the orphan nuclear receptor family, is a key mediator in cellular metabolic processes and energy homeostasis. Therefore, ERRγ has become an attractive target for treating diverse metabolic disorders. We recently reported that ERRγ acts as a negative regulator of osteoclastogenesis induced by receptor activator of nuclear factor-κB ligand (RANKL). In the present study, we explored the effects of an ERRγ-specific modulator, GSK5182, on ERRγ-regulated osteoclast differentiation and survival. Interestingly, GSK5182 increased ERRγ protein levels much as does GSK4716, which is an ERRγ agonist. GSK5182 inhibited osteoclast generation from bone-marrow-derived macrophages without affecting cytotoxicity. GSK5182 also attenuated RANKL-mediated expression of c-Fos and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), pivotal transcription factors for osteoclastogenesis. Arrested osteoclast differentiation was associated with reduced RANK expression, but not with the M-CSF receptor, c-Fms. GSK5182 strongly blocked the phosphorylation of IκBα, c-Jun N-terminal kinase, and extracellular signal-regulated kinase in response to RANKL. GSK5182 also suppressed NF-κB promoter activity in a dose-dependent manner. In addition to osteoclastogenesis, GSK5182 accelerated osteoclast apoptosis by caspase-3 activation. Together, these results suggest that GSK5182, a synthetic ERRγ modulator, may have potential in treating disorders related to bone resorption. [BMB Reports 2021; 54(5): 266-271].


Subject(s)
Apoptosis/drug effects , Osteoclasts/drug effects , Tamoxifen/analogs & derivatives , Animals , Cell Differentiation/drug effects , Cell Line , Cell Survival/drug effects , Male , Mice , Mice, Inbred C57BL , Osteoclasts/metabolism , Tamoxifen/pharmacology
20.
Cell Mol Life Sci ; 78(1): 207-225, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32140747

ABSTRACT

NAD(P)-dependent steroid dehydrogenase-like (NSDHL), an essential enzyme in human cholesterol synthesis and a regulator of epidermal growth factor receptor (EGFR) trafficking pathways, has attracted interest as a therapeutic target due to its crucial relevance to cholesterol-related diseases and carcinomas. However, the development of pharmacological agents for targeting NSDHL has been hindered by the absence of the atomic details of NSDHL. In this study, we reported two X-ray crystal structures of human NSDHL, which revealed a detailed description of the coenzyme-binding site and the unique conformational change upon the binding of a coenzyme. A structure-based virtual screening and biochemical evaluation were performed and identified a novel inhibitor for NSDHL harboring suppressive activity towards EGFR. In EGFR-driven human cancer cells, treatment with the potent NSDHL inhibitor enhanced the antitumor effect of an EGFR kinase inhibitor. Overall, these findings could serve as good platforms for the development of therapeutic agents against NSDHL-related diseases.


Subject(s)
3-Hydroxysteroid Dehydrogenases/metabolism , Enzyme Inhibitors/metabolism , 3-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , 3-Hydroxysteroid Dehydrogenases/chemistry , 3-Hydroxysteroid Dehydrogenases/genetics , Binding Sites , Cell Line, Tumor , Cell Survival/drug effects , Cholesterol/chemistry , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Erlotinib Hydrochloride/chemistry , Erlotinib Hydrochloride/metabolism , Erlotinib Hydrochloride/pharmacology , Humans , Kinetics , Molecular Docking Simulation , Mutagenesis, Site-Directed , NAD/chemistry , NAD/metabolism , Protein Structure, Tertiary , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...