Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36865109

ABSTRACT

Self-grooming is an innate, naturalistic behavior found in a wide variety of organisms. The control of rodent grooming has been shown to be mediated by the dorsolateral striatum through lesion studies and in-vivo extracellular recordings. Yet, it is unclear how populations of neurons in the striatum encode grooming. We recorded single-unit extracellular activity from populations of neurons in freely moving mice and developed a semi-automated approach to detect self-grooming events from 117 hours of simultaneous multi-camera video recordings of mouse behavior. We first characterized the grooming transition-aligned response profiles of striatal projection neuron and fast spiking interneuron single units. We identified striatal ensembles whose units were more strongly correlated during grooming than during the entire session. These ensembles display varied grooming responses, including transient changes around grooming transitions or sustained changes in activity throughout the duration of grooming. Neural trajectories computed from the identified ensembles retain the grooming related dynamics present in trajectories computed from all units in the session. These results elaborate striatal function in rodent self-grooming and demonstrate that striatal grooming-related activity is organized within functional ensembles, improving our understanding of how the striatum guides action selection in a naturalistic behavior.

2.
Nat Commun ; 13(1): 5571, 2022 09 22.
Article in English | MEDLINE | ID: mdl-36137999

ABSTRACT

In vivo optogenetics and photopharmacology are two techniques for controlling neuronal activity that have immense potential in neuroscience research. Their applications in tether-free groups of animals have been limited in part due to tools availability. Here, we present a wireless, battery-free, programable multilateral optofluidic platform with user-selected modalities for optogenetics, pharmacology and photopharmacology. This system features mechanically compliant microfluidic and electronic interconnects, capabilities for dynamic control over the rates of drug delivery and real-time programmability, simultaneously for up to 256 separate devices in a single cage environment. Our behavioral experiments demonstrate control of motor behaviors in grouped mice through in vivo optogenetics with co-located gene delivery and controlled photolysis of caged glutamate. These optofluidic systems may expand the scope of wireless techniques to study neural processing in animal models.


Subject(s)
Neurosciences , Optogenetics , Animals , Brain/physiology , Glutamates , Mice , Optogenetics/methods , Wireless Technology
SELECTION OF CITATIONS
SEARCH DETAIL
...