Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 5537, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34545077

ABSTRACT

The long-term cycling of anode-free Li-metal cells (i.e., cells where the negative electrode is in situ formed by electrodeposition on an electronically conductive matrix of lithium sourced from the positive electrode) using a liquid electrolyte is affected by the formation of an inhomogeneous solid electrolyte interphase (SEI) on the current collector and irregular Li deposition. To circumvent these issues, we report an atomically defective carbon current collector where multivacancy defects induce homogeneous SEI formation on the current collector and uniform Li nucleation and growth to obtain a dense Li morphology. Via simulations and experimental measurements and analyses, we demonstrate the beneficial effect of electron deficiency on the Li hosting behavior of the carbon current collector. Furthermore, we report the results of testing anode-free coin cells comprising a multivacancy defective carbon current collector, a LixNi0.8Co0.1Mn0.1-based cathode and a nonaqueous Li-containing electrolyte solution. These cells retain 90% of their initial capacity for over 50 cycles under lean electrolyte conditions.

2.
Sci Rep ; 6: 31160, 2016 08 09.
Article in English | MEDLINE | ID: mdl-27503427

ABSTRACT

Securing a semiconducting bandgap is essential for applying graphene layers in switching devices. Theoretical studies have suggested a created bulk bandgap in a graphene layer by introducing an asymmetry between the A and B sub-lattice sites. A recent transport measurement demonstrated the presence of a bandgap in a graphene layer where the asymmetry was introduced by placing a graphene layer on a hexagonal boron nitride (h-BN) substrate. Similar bandgap has been observed in graphene layers on metal substrates by local probe measurements; however, this phenomenon has not been observed in graphene layers on a near-insulating substrate. Here, we present bulk bandgap-like features in a graphene layer epitaxially grown on an h-BN substrate using scanning tunneling spectroscopy. We observed edge states at zigzag edges, edge resonances at armchair edges, and bandgap-like features in the bulk.

3.
Phys Chem Chem Phys ; 15(38): 16019-23, 2013 Oct 14.
Article in English | MEDLINE | ID: mdl-23958746

ABSTRACT

Methods to decouple epitaxial graphene from metal substrates have been extensively studied, with anticipation of observing unperturbed Dirac cone properties, but its local electronic structures were rarely studied. Here, we investigated the local variations of Dirac cones recovered using oxygen intercalation applied to epitaxial graphene on Ru(0001) using scanning tunneling microscopy and spectroscopy (STM and STS). New V-shaped features, which appear in the STS data at the oxygen-intercalated graphene regions, are attributed to the signatures of recovered Dirac cones. The Dirac point energy was observed at 0.48 eV below the Fermi level, different from previous photoemission results because of different oxygen coverages. The observed spatial variations of Dirac point energy were explained by the weakly protruding network structures caused by a small net strain in graphene. Our study shows that oxygen-intercalated graphene provides an excellent platform for further graphene research at the nano-meter scale with unperturbed Dirac cones.

4.
Phys Chem Chem Phys ; 14(20): 7304-8, 2012 May 28.
Article in English | MEDLINE | ID: mdl-22517479

ABSTRACT

The electronic structures of self-assembled hybrid chains comprising Ag atoms and organic molecules were studied using scanning tunneling microscopy (STM) and spectroscopy (STS) in parallel with density functional theory (DFT). Hybrid chains were prepared by catalytic breaking of Br-C bonds in 4,4″-dibromo-p-terphenyl molecules, followed by spontaneous formation of Ag-C bonds on Ag(111). An atomic model was proposed for the observed hybrid chain structures. Four electronic states were resolved using STS measurements, and strong energy dependence was observed in STM images. These results were explained using first-principles calculations based on DFT.

5.
Nanotechnology ; 22(46): 465602, 2011 Nov 18.
Article in English | MEDLINE | ID: mdl-22033033

ABSTRACT

Atomically flat thin films of Bi(2)Se(3) were grown on Au(111) metal substrate using molecular beam epitaxy. Hexagonal atomic structures and quintuple layer steps were observed at the surfaces of grown films using scanning tunneling microscopy. Multiple sharp peaks from (003) family layers were characterized by x-ray diffraction measurements. The atomic stoichiometry of Bi and Se was considered using x-ray photoemission spectroscopy. Moiré patterns were obtained at the surfaces of one quintuple layer films due to lattice mismatch between Bi(2)Se(3) and Au. Our experiments suggest that Au is a reasonable material for electrodes in Bi(2)Se(3) devices.

6.
Chem Commun (Camb) ; 47(41): 11492-4, 2011 Nov 07.
Article in English | MEDLINE | ID: mdl-21952401

ABSTRACT

Intermolecular structures of porous two-dimensional supramolecular networks are studied using scanning tunnelling microscopy combined with density functional theory calculations. The local configurations of halogen bonds in polymorphic porous supramolecular networks are directly visualized in support of previous bulk crystal studies.

7.
Nanotechnology ; 22(27): 275705, 2011 Jul 08.
Article in English | MEDLINE | ID: mdl-21597147

ABSTRACT

Chiral phase transitions were studied in a self-assembled 2,6-dibromoanthraquinones supramolecular system prepared on Au(111) using scanning tunneling microscopy. As the molecules were deposited at about 150 K, they formed heterochiral chevron structures (a racemate) consisting of two alternating prochiral molecular rows. When the as-deposited sample was warmed to 300 K followed by cooling to 80 K, phase-separated homochiral structures (a conglomerate), as well as the chevron structures, were observed. We propose molecular models for the structures that are in good agreement with ab initio studies and can be explained by hydrogen bonds and halogen bonds. We found that heterochiral chevron structures were more stable than homochiral structures due to two additional [Formula: see text] halogen bonds per molecule. We considered kinetic pathways for the phase transitions that were made possible via a disordered liquid phase entropically stabilized at 300 K. We show how chiral resolution can be achieved by exploiting kinetic paths allowed in supramolecular systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...