Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Insect Biochem Mol Biol ; 66: 103-9, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26494014

ABSTRACT

The body louse, Pediculus humanus humanus, is an obligate blood-feeding ectoparasite and an important insect vector that mediates the transmission of diseases to humans. The analysis of the body louse genome revealed a drastic reduction of the chemosensory gene repertoires when compared to other insects, suggesting specific olfactory adaptations to host specialization and permanent parasitic lifestyle. Here, we present for the first time functional evidence for the role of odorant receptors (ORs) in this insect, with the objective to gain insight into the chemical ecology of this vector. We identified seven putative full-length ORs, in addition to the odorant receptor co-receptor (Orco), and expressed four of them in the Xenopus laevis oocytes system. When screened with a panel of ecologically-relevant odorants, PhumOR2 responded to a narrow set of compounds. At the behavior level, both head and body lice were repelled by the physiologically-active chemicals. This study presents the first evidence of the OR pathway being functional in lice and identifies PhumOR2 as a sensitive receptor of natural repellents that could be used to develop novel efficient molecules to control these insects.


Subject(s)
Insect Repellents/pharmacology , Pediculus/drug effects , Pediculus/genetics , Receptors, Odorant/genetics , Smell , Animals , Electrophysiological Phenomena , Female , Insect Vectors , Oocytes , Xenopus laevis
2.
PLoS One ; 8(3): e58773, 2013.
Article in English | MEDLINE | ID: mdl-23554923

ABSTRACT

The bacterial pathogen Bartonella quintana is passed between humans by body lice. B. quintana has adapted to both the human host and body louse vector niches, producing persistent infection with high titer bacterial loads in both the host (up to 10(5) colony-forming units [CFU]/ml) and vector (more than 10(8) CFU/ml). Using a novel custom microarray platform, we analyzed bacterial transcription at temperatures corresponding to the host (37°C) and vector (28°C), to probe for temperature-specific and growth phase-specific transcriptomes. We observed that transcription of 7% (93 genes) of the B. quintana genome is modified in response to change in growth phase, and that 5% (68 genes) of the genome is temperature-responsive. Among these transcriptional changes in response to temperature shift and growth phase was the induction of known B. quintana virulence genes and several previously unannotated genes. Hemin binding proteins, secretion systems, response regulators, and genes for invasion and cell attachment were prominent among the differentially-regulated B. quintana genes. This study represents the first analysis of global transcriptional responses by B. quintana. In addition, the in vivo experiments provide novel insight into the B. quintana transcriptional program within the body louse environment. These data and approaches will facilitate study of the adaptation mechanisms employed by Bartonella during the transition between human host and arthropod vector.


Subject(s)
Bartonella quintana/genetics , Temperature , Transcriptome , Animals , Arthropod Vectors/microbiology , Bartonella quintana/growth & development , Bartonella quintana/pathogenicity , Base Sequence , Cluster Analysis , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Host-Pathogen Interactions , Humans , Molecular Sequence Annotation , Nucleotide Motifs , Promoter Regions, Genetic , Transcription, Genetic , Virulence/genetics
3.
Commun Integr Biol ; 4(2): 188-91, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21655436

ABSTRACT

The body louse, with its recently sequenced genome, is now primed to serve as a powerful model organism for addressing fundamental questions relating to how insects interact with their environment. One characteristic of the body louse that facilitates this research is the size of its genome-the smallest insect genome sequenced to date. This diminutive genome must nonetheless control an organism that senses and responds to its environment, reacting to threats of corporal and genomic integrity. Additionally, the body louse transmits several important human diseases compared to its very close relative, the head louse, which does not. Therefore, these two organisms comprise an excellent model system for studying molecular mechanisms associated with vector competence. To understand more fully the development of vector/pathogen interactions, we have developed an in vitro bioassay system and determined that the body louse genome appears to contain the genes necessary for RNAi. The body louse will therefore be useful for determining the set of conditions permissive to the evolution of vector competence.

4.
Proc Natl Acad Sci U S A ; 107(27): 12168-73, 2010 Jul 06.
Article in English | MEDLINE | ID: mdl-20566863

ABSTRACT

As an obligatory parasite of humans, the body louse (Pediculus humanus humanus) is an important vector for human diseases, including epidemic typhus, relapsing fever, and trench fever. Here, we present genome sequences of the body louse and its primary bacterial endosymbiont Candidatus Riesia pediculicola. The body louse has the smallest known insect genome, spanning 108 Mb. Despite its status as an obligate parasite, it retains a remarkably complete basal insect repertoire of 10,773 protein-coding genes and 57 microRNAs. Representing hemimetabolous insects, the genome of the body louse thus provides a reference for studies of holometabolous insects. Compared with other insect genomes, the body louse genome contains significantly fewer genes associated with environmental sensing and response, including odorant and gustatory receptors and detoxifying enzymes. The unique architecture of the 18 minicircular mitochondrial chromosomes of the body louse may be linked to the loss of the gene encoding the mitochondrial single-stranded DNA binding protein. The genome of the obligatory louse endosymbiont Candidatus Riesia pediculicola encodes less than 600 genes on a short, linear chromosome and a circular plasmid. The plasmid harbors a unique arrangement of genes required for the synthesis of pantothenate, an essential vitamin deficient in the louse diet. The human body louse, its primary endosymbiont, and the bacterial pathogens that it vectors all possess genomes reduced in size compared with their free-living close relatives. Thus, the body louse genome project offers unique information and tools to use in advancing understanding of coevolution among vectors, symbionts, and pathogens.


Subject(s)
Genome, Bacterial/genetics , Genome, Insect/genetics , Pediculus/genetics , Pediculus/microbiology , Animals , Enterobacteriaceae/genetics , Genes, Bacterial/genetics , Genes, Insect/genetics , Genomics/methods , Humans , Lice Infestations/parasitology , Molecular Sequence Data , Sequence Analysis, DNA , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL
...