Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 13(12): 7891-4, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24266159

ABSTRACT

Flexible hydrogenated nanocrystalline (nc-Si:H) thin-film solar cells were prepared by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD), and the effect of highly crystalline intrinsic Si seed layers at the initial growth stage of i nc-Si:H absorbers on their structural and electrical properties and on the performance of solar cells was investigated. The crystallization of i nc-Si:H absorbers was significantly enforced by the introduction of highly crystalline seed layers, resulting in the reduction of defect-dense a-Si:H grain boundary and incubation layer thickness. The open circuit voltage of the nc-Si:H solar cells with the seed layers was improved by the decrease of charged defect density in the defect-rich amorphous region.

2.
Phys Chem Chem Phys ; 15(23): 9239-44, 2013 Jun 21.
Article in English | MEDLINE | ID: mdl-23657475

ABSTRACT

This study guided by device evaluations was conducted to reveal the reasons for the loss of the photo-generated carriers in CIGS cells with the buffer based on In2S3 derivatives. Chemical bath deposited Inx(OOH,S)y films have been employed as a Cd-free buffer layers. When compared to solar cells with CdS buffer layer, the Cu0.9(In0.7,Ga0.3)Se2.1 (Eg = 1.18 eV) cells with the Inx(OOH,S)y buffer exhibited strong voltage-dependent carrier collection and poor spectral response above 500 nm, presumably, due to energy barrier at the junction. In order to improve the charge collection by upward shift of the conduction band minimum of CIGS absorber, Inx(OOH,S)y/Cu0.9(In0.55,Ga0.45)Se2.1 (Eg = 1.30 eV) solar cells were also fabricated and their spectral responses were examined. When compared to the Cu0.9(In0.7,Ga0.3)Se2.1 cells, the improved spectral response and voltage dependent carrier collection were obtained. Nevertheless, considerable loss in charge collection above 500 nm was still observed. The efficiency reached 9.3% while the Cu0.9(In0.7,Ga0.3)Se2.1 cell exhibited only the efficiency of 3.4%. Finally, CIGS (Eg = 1.18 eV) solar cells with n-ZnO/i-ZnO/Inx(OOH,S)y/CdS/CIGS and n-ZnO/i-ZnO/CdS/Inx(OOH,S)y/CIGS configurations were fabricated. The influence of the TCO/buffer interface on the device characteristics was also addressed by means of comparison between the characteristics of two cells employing different interfaces. A 13.0% efficient cell has been achieved from n-ZnO/i-ZnO/CdS/Inx(OOH,S)y/CIGS configuration. The obtained data suggested that the limitation of the device efficiency was mainly related to the i-ZnO/Inx(OOH,S)y interface. The experimental results provide the knowledge base for further optimization of the interface properties to form high-quality p-n junction in the CIGS solar cells employing the CBD In2S3 buffer layer.

SELECTION OF CITATIONS
SEARCH DETAIL
...