Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 10(5): e2205918, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36526598

ABSTRACT

Ni-rich cathodes are the most promising candidates for realizing high-energy-density Li-ion batteries. However, the high-valence Ni4+ ions formed in highly delithiated states are prone to reduction to lower valence states, such as Ni3+ and Ni2+ , which may cause lattice oxygen loss, cation mixing, and Ni ion dissolution. Further, LiPF6 , a key salt in commercialized electrolytes, undergoes hydrolysis to produce acidic compounds, which accelerate Ni-ion dissolution and the interfacial deterioration of the Ni-rich cathode. Dissolved Ni ions migrate and deposit on the surface of the graphite anode, causing continuous electrolyte decomposition and threatening battery safety by forming Li dendrites on the anode. Herein, 1,2-bis(diphenylphosphino)ethane (DPPE) chelates Ni ions dissolved from the Ni-rich cathode using bidentate phosphine moieties and alleviates LiPF6 hydrolysis via complexation with PF5 . Further, DPPE reduces the generation of corrosive HF and HPO2 F2 substantially compared to the amounts observed using trimethyl phosphite and tris(trimethylsilyl) phosphite, which are HF-scavenging additives. Li-ion cells with Ni-rich cathodes and graphite anodes containing DPPE exhibit remarkable discharge capacity retentions of 83.4%, with high Coulombic efficiencies of >99.99% after 300 cycles at 45 °C. The results of this study will promote the development of electrolyte additives.

2.
Adv Mater ; 33(18): e2100352, 2021 May.
Article in English | MEDLINE | ID: mdl-33783055

ABSTRACT

In recent years, Li- and Mn-rich layered oxides (LMRs) have been vigorously explored as promising cathodes for next-generation, Li-ion batteries due to their high specific energy. Nevertheless, their actual implementation is still far from a reality since the trade-off relationship between the particle size and chemical reversibility prevents LMRs from achieving a satisfactory, industrial energy density. To solve this material dilemma, herein, a novel morphological and structural design is introduced to Li1.11 Mn0.49 Ni0.29 Co0.11 O2 , reporting a sub-micrometer-level LMR with a relatively delocalized, excess-Li system. This system exhibits an ultrahigh energy density of 2880 Wh L-1 and a long-lasting cycle retention of 83.1% after the 100th cycle for 45 °C full-cell cycling, despite its practical electrode conditions. This outstanding electrochemical performance is a result of greater lattice-oxygen stability in the delocalized excess-Li system because of the low amount of highly oxidized oxygen ions. Geometric dispersion of the labile oxygen ions effectively suppresses oxygen evolution from the lattice when delithiated, eradicating the rapid energy degradation in a practical cell system.

3.
Adv Mater ; 32(39): e2003040, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32820565

ABSTRACT

Conventional nickel-rich cathode materials suffer from reaction heterogeneity during electrochemical cycling particularly at high temperature, because of their polycrystalline properties and secondary particle morphology. Despite intensive research on the morphological evolution of polycrystalline nickel-rich materials, its practical investigation at the electrode and cell levels is still rarely discussed. Herein, an intrinsic limitation of polycrystalline nickel-rich cathode materials in high-energy full-cells is discovered under industrial electrode-fabrication conditions. Owing to their highly unstable chemo-mechanical properties, even after the first cycle, nickel-rich materials are degraded in the longitudinal direction of the high-energy electrode. This inhomogeneous degradation behavior of nickel-rich materials at the electrode level originates from the overutilization of active materials on the surface side, causing a severe non-uniform potential distribution during long-term cycling. In addition, this phenomenon continuously lowers the reversibility of lithium ions. Consequently, considering the degradation of polycrystalline nickel-rich materials, this study suggests the adoption of a robust single-crystalline LiNi0.8 Co0.1 Mn0.1 O2 as a feasible alternative, to effectively suppress the localized overutilization of active materials. Such an adoption can stabilize the electrochemical performance of high-energy lithium-ion cells, in which superior capacity retention above ≈80% after 1000 cycles at 45 °C is demonstrated.

4.
Adv Mater ; 32(34): e2001944, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32656860

ABSTRACT

Li- and Mn-rich layered oxides (LMRs) have emerged as practically feasible cathode materials for high-energy-density Li-ion batteries due to their extra anionic redox behavior and market competitiveness. However, sluggish kinetics regions (<3.5 V vs Li/Li+ ) associated with anionic redox chemistry engender LMRs with chemical irreversibility (first-cycle irreversibility, poor rate properties, voltage fading), which limits their practical use. Herein, the structural origin of this chemical irreversibility is revealed through a comparative study involving Li1.15 Mn0.51 Co0.17 Ni0.17 O2 with relatively localized and delocalized excess-Li in its lattice system. Operando fine-interval X-ray absorption spectroscopy is used to simultaneously observe the interplay between transition-metal-oxygen (TM-O) redox chemistry and TM migration behavior in real time. Density functional theory calculations show that excess-Li localization in the LMR structure attenuates TM-O covalency and stability, leading to overall chemical irreversibility. Hence, the delocalized excess-Li system is proposed as an alternative design for practically feasible LMR cathodes with restrained TM migration and sustainable O-redox chemistry.

5.
Nat Commun ; 9(1): 3285, 2018 08 16.
Article in English | MEDLINE | ID: mdl-30115925

ABSTRACT

Lithium-excess 3d-transition-metal layered oxides (Li1+xNiyCozMn1-x-y-zO2, >250 mAh g-1) suffer from severe voltage decay upon cycling, which decreases energy density and hinders further research and development. Nevertheless, the lack of understanding on chemical and structural uniqueness of the material prevents the interpretation of internal degradation chemistry. Here, we discover a fundamental reason of the voltage decay phenomenon by comparing ordered and cation-disordered materials with a combination of X-ray absorption spectroscopy and transmission electron microscopy studies. The cation arrangement determines the transition metal-oxygen covalency and structural reversibility related to voltage decay. The identification of structural arrangement with de-lithiated oxygen-centred octahedron and interactions between octahedrons affecting the oxygen stability and transition metal mobility of layered oxide provides the insight into the degradation chemistry of cathode materials and a way to develop high-energy density electrodes.

6.
Adv Mater ; 29(48)2017 Dec.
Article in English | MEDLINE | ID: mdl-28251710

ABSTRACT

Cathode material degradation during cycling is one of the key obstacles to upgrading lithium-ion and beyond-lithium-ion batteries for high-energy and varied-temperature applications. Herein, we highlight recent progress in material surface-coating as the foremost solution to resist the surface phase-transitions and cracking in cathode particles in mono-valent (Li, Na, K) and multi-valent (Mg, Ca, Al) ion batteries under high-voltage and varied-temperature conditions. Importantly, we shed light on the future of materials surface-coating technology with possible research directions. In this regard, we provide our viewpoint on a novel hybrid surface-coating strategy, which has been successfully evaluated in LiCoO2 -based-Li-ion cells under adverse conditions with industrial specifications for customer-demanding applications. The proposed coating strategy includes a first surface-coating of the as-prepared cathode powders (by sol-gel) and then an ultra-thin ceramic-oxide coating on their electrodes (by atomic-layer deposition). What makes it appealing for industry applications is that such a coating strategy can effectively maintain the integrity of materials under electro-mechanical stress, at the cathode particle and electrode- levels. Furthermore, it leads to improved energy-density and voltage retention at 4.55 V and 45 °C with highly loaded electrodes (≈24 mg.cm-2 ). Finally, the development of this coating technology for beyond-lithium-ion batteries could be a major research challenge, but one that is viable.

SELECTION OF CITATIONS
SEARCH DETAIL
...