Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Molecules ; 24(24)2019 Dec 17.
Article in English | MEDLINE | ID: mdl-31861185

ABSTRACT

Herein, thermal decomposition experiments of lithium peroxide (Li2O2) were performed to prepare a precursor (Li2O) for sacrificing cathode material, Li2NiO2. The Li2O2 was prepared by a hydrometallurgical reaction between LiOH·H2O and H2O2. The overall reaction during annealing was found to involve the following three steps: (1) dehydration of LiOH·H2O, (2) decomposition of Li2O2, and (3) pyrolysis of the remaining anhydrous LiOH. This stepwise reaction was elucidated by thermal gravimetric and quantitative X-ray diffraction analyses. Furthermore, over-lithiated lithium nickel oxide (Li2NiO2) using our lithium precursor was synthesized, which exhibited a larger yield of 90.9% and higher irreversible capacity of 261 to 265 mAh g-1 than the sample prepared by commercially purchased Li2O (45.6% and 177 to 185 mAh g-1, respectively) due to optimal powder preparation conditions.


Subject(s)
Electric Power Supplies , Ions/chemistry , Lithium/chemistry , Nickel/chemistry , X-Ray Diffraction
2.
ACS Appl Mater Interfaces ; 11(40): 36807-36816, 2019 Oct 09.
Article in English | MEDLINE | ID: mdl-31514504

ABSTRACT

A threshold resistive switching (RS) device concurrently demonstrating analog memristive property with mesoporous silica-titania (m-ST) nanocomposites is introduced in this study. The nanostructured m-ST layer in an Al/m-ST/Pt device was constructed by facile soft templating of evaporation-induced self-assembly (EISA) method to demonstrate nonlinear threshold RS behaviors accompanying with discrete synaptic characteristics along with adaptive motions. The EISA layer was composed of well-ordered mesopores (∼10 nm), where paths of electrical currents could be controllably guided and sequentially activated by repeated voltage sweeps. The combinational memristive behavior accompanying the shift of threshold voltage (Vth) could implicate concurrent performances of threshold RS and selection diode devices. In addition, synaptic functionalities of long-term potentiation and depression were characterized by variations of pulse timing width (7-100 ms). Physical and chemical features of the m-ST were analyzed with Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, high-resolution transmission electron microscopy, and optical microscopy to investigate the unique origin of dual operation modes of the device. The m-ST synaptic device could have potential for further development of a hybrid selection diode having both a low sneaky current loss and memristive characteristics accomplishing low level of cross-talk between RS devices.

3.
J Nanosci Nanotechnol ; 19(5): 2876-2881, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30501794

ABSTRACT

Herein, Ni0.8Co0.15Al0.05(OH)2 materials, a by-product in the preparation of the precursor of cathode materials for lithium ion batteries, were employed as supercapacitor electrodes. The reaction time was changed from 2 to 48 h to produce hydroxide products, which were analyzed using physical and electrochemical methods. The hydroxide material reacted for 2 h exhibited a good average particle strength of 34.3 MPa with a particle size of 7 µm. When used as a supercapacitor electrode, the 2 h-reacted hydroxide electrode presented a high capacitance of 244.7 F g-1 at a current density of 0.5 A g-1 with a typical pseudocapacitive behavior, indicative of a highly suitable supercapacitor electrode material.

4.
Nanotechnology ; 29(19): 195403, 2018 May 11.
Article in English | MEDLINE | ID: mdl-29424700

ABSTRACT

The fabrication of ß-CoV3O8 nanorods embedded in graphene sheets and their application as electrochemical charge storage electrodes is reported. From the surfactant treatment of raw graphite, graphene was directly prepared and its nanocomposite with ß-CoV3O8 nanorods distributed between graphene layers (ß-CoV3O8-G) was synthesized by a hydrothermal method. When applied as an anode in lithium-ion batteries, the ß-CoV3O8-G anode exhibits greatly improved charge and discharge capacities of 790 and 627 mAh · g-1, respectively, with unexpectedly high initial efficiency of 82%. The observed discharge capacity reflected that at least 3.7 mol of Li+ is selectively accumulated within the ß-CoV3O8 phase (LixCoV3O8, x > 3.7), indicative of significantly improved Li+ uptake when compared with aggregated ß-CoV3O8 nanorods. Moreover, very distinct peak plateaus and greatly advanced cycling performance are observed, showing more improved Li+ storage within the ß-CoV3O8 phase. As a supercapacitor electrode, moreover, our composite electrode exhibits very high peak pseudocapacitances of 2.71 F · cm-2 and 433.65 F · g-1 in the ß-CoV3O8 phase with extremely stable cycling performance. This remarkably enhanced performance in the individual electrochemical charge storage electrodes is attributed to the novel phase formation of ß-CoV3O8 and its optimized nanocomposite structure with graphene, which yield fast electrical conduction through graphene, easy accessibility of ions through the open multilayer nanosheet structure, and a relaxation space between the ß-CoV3O8-G.

5.
J Nanosci Nanotechnol ; 17(1): 389-97, 2017 01.
Article in English | MEDLINE | ID: mdl-29620840

ABSTRACT

Using a stabilizing agent-assisted co-assembly method, a novel nanocomposite of mesoporous carbon embedded with uniform tungsten oxide nanorods is obtained, which is converted into carbon-sheathed tungsten oxide nanoparticles by delicate calcination and further reduction. Through optimization of tungsten content, it is found that highly crystalline tungsten oxide nanoparticles are uniformly coated with an ultra-thin carbon layer. When applied into electrochemical charge-storage electrodes for supercapacitor and lithium-ion battery, an excellent average capacitance (129 F g−1, above 400 F cm−3), higher rate performance and significantly advanced cycle stability are observed. These improved charge storage properties are attributed to improved electrical conductivity and enhanced structural stability, which is induced by uniform carbon coating on partially reduced tungsten oxide nanoparticles.

6.
ACS Nano ; 9(7): 7497-505, 2015 Jul 28.
Article in English | MEDLINE | ID: mdl-26095456

ABSTRACT

Hybrid supercapacitors (battery-supercapacitor hybrid devices, HSCs) deliver high energy within seconds (excellent rate capability) with stable cyclability. One of the key limitations in developing high-performance HSCs is imbalance in power capability between the sluggish Faradaic lithium-intercalation anode and rapid non-Faradaic capacitive cathode. To solve this problem, we synthesize Nb2O5@carbon core-shell nanocyrstals (Nb2O5@C NCs) as high-power anode materials with controlled crystalline phases (orthorhombic (T) and pseudohexagonal (TT)) via a facile one-pot synthesis method based on a water-in-oil microemulsion system. The synthesis of ideal T-Nb2O5 for fast Li(+) diffusion is simply achieved by controlling the microemulsion parameter (e.g., pH control). The T-Nb2O5@C NCs shows a reversible specific capacity of ∼180 mA h g(-1) at 0.05 A g(-1) (1.1-3.0 V vs Li/Li(+)) with rapid rate capability compared to that of TT-Nb2O5@C and carbon shell-free Nb2O5 NCs, mainly due to synergistic effects of (i) the structural merit of T-Nb2O5 and (ii) the conductive carbon shell for high electron mobility. The highest energy (∼63 W h kg(-1)) and power (16 528 W kg(-1) achieved at ∼5 W h kg(-1)) densities within the voltage range of 1.0-3.5 V of the HSC using T-Nb2O5@C anode and MSP-20 cathode are remarkable.

7.
Chemistry ; 20(45): 14880-4, 2014 Nov 03.
Article in English | MEDLINE | ID: mdl-25224653

ABSTRACT

Colloidal nanosheets of nickel-manganese layered double hydroxides (LDHs) have been synthesized in high yields through a facile reverse micelle method with xylene as an oil phase and oleylamine as a surfactant. Electron microscopy studies of the product revealed the formation of colloidal nanoplatelets with sizes of 50-150 nm, and X-ray diffraction, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy studies showed that the Ni-Mn LDH nanosheets had a hydrotalcite-like structure with a formula of [Ni3 Mn(OH)8 ](Cl(-) )⋅n H2 O. We found that the presence of both Ni and Mn precursors was required for the growth of Ni-Mn LDH nanosheets. As pseudocapacitors, the Ni-Mn LDH nanosheets exhibited much higher specific capacitance than unitary nickel hydroxides and manganese oxides.

8.
ACS Nano ; 8(9): 8968-78, 2014 Sep 23.
Article in English | MEDLINE | ID: mdl-25137384

ABSTRACT

Recently, hybrid supercapacitors (HSCs), which combine the use of battery and supercapacitor, have been extensively studied in order to satisfy increasing demands for large energy density and high power capability in energy-storage devices. For this purpose, the requirement for anode materials that provide enhanced charge storage sites (high capacity) and accommodate fast charge transport (high rate capability) has increased. Herein, therefore, a preparation of nanocomposite as anode material is presented and an advanced HSC using it is thoroughly analyzed. The HSC comprises a mesoporous Nb2O5/carbon (m-Nb2O5-C) nanocomposite anode synthesized by a simple one-pot method using a block copolymer assisted self-assembly and commercial activated carbon (MSP-20) cathode under organic electrolyte. The m-Nb2O5-C anode provides high specific capacity with outstanding rate performance and cyclability, mainly stemming from its enhanced pseudocapacitive behavior through introduction of a carbon-coated mesostructure within a voltage range from 3.0 to 1.1 V (vs Li/Li(+)). The HSC using the m-Nb2O5-C anode and MSP-20 cathode exhibits excellent energy and power densities (74 W h kg(-1) and 18,510 W kg(-1)), with advanced cycle life (capacity retention: ∼90% at 1000 mA g(-1) after 1000 cycles) within potential range from 1.0 to 3.5 V. In particular, we note that the highest power density (18,510 W kg(-1)) of HSC is achieved at 15 W h kg(-1), which is the highest level among similar HSC systems previously reported. With further study, the HSCs developed in this work could be a next-generation energy-storage device, bridging the performance gap between conventional batteries and supercapacitors.

9.
Nanoscale ; 6(17): 10147-55, 2014 Sep 07.
Article in English | MEDLINE | ID: mdl-25042206

ABSTRACT

A one-step and mass-production synthetic route for a flexible reduced tungsten oxide-carbon composite nanofiber (WO(x)-C-NF) film is demonstrated via an electrospinning technique. The WO(x)-C-NF film exhibits unprecedented high content of metal-oxides (∼ 80 wt%) and good flexibility (the tensile strength of the specimen was 6.13 MPa) without the use of flexible support materials like CNTs or graphene. The WO(x)-C-NF film is directly used as an anode in a lithium ion battery (LIB). Compared with previously reported tungsten oxide electrodes, the WO(x)-C-NF film exhibits high reversible capacity (481 mA h g(-1)total electrode), stable cycle, and improved rate performance, without the use of additive carbon, a polymeric binder and a current collector. Moreover, control electrodes fabricated by conventional processes support the positive effects of both the freestanding electrode and metal-oxide embedded carbon 1-D nanofiber structure.

10.
ChemSusChem ; 5(12): 2376-82, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23109490

ABSTRACT

Nanocomposites of crystalline-controlled TiO(2) -carbon are prepared by a novel one-step approach and applied in anodes of lithium ion batteries. In our nanocomposite anodes, the Li(+) capacity contribution from the TiO(2) phase was enormous, above 400 mAh g(-1) (Li(1+x) TiO(2) , x>0.2), and the volumetric capacity was as high as 877 mAh cm(-3) with full voltage utilization to 0 V versus Li/Li(+) , which resulted in higher energy density than that of state-of-the-art titania anodes. For the first time, it was clearly revealed that the capacity at 1.2 and 2.0 V corresponded to Li(+) storage at amorphous and crystalline TiO(2) , respectively. Furthermore, improvements in the rate capability and cycle performance were observed; this was attributed to resistance reduction induced by higher electrical/Li(+) conduction and faster Li(+) diffusion.


Subject(s)
Carbon/chemistry , Electric Power Supplies , Lithium/chemistry , Nanocomposites/chemistry , Titanium/chemistry , Electric Conductivity , Electrodes , Microscopy, Electron, Transmission , Porosity , Surface Properties , X-Ray Diffraction
11.
Phys Chem Chem Phys ; 14(16): 5695-704, 2012 Apr 28.
Article in English | MEDLINE | ID: mdl-22434145

ABSTRACT

Mesocellular carbon foam (MSU-F-C) is functionalized with hollow nanographite by a simple solution-phase method to enhance the intrapenetrating electrical percolation network. The electrical conductivity of the resulting material, denoted as MSU-F-C-G, is increased by a factor of 20.5 compared with the pristine MSU-F-C. Hollow graphite nanoparticles are well-dispersed in mesocellular carbon foam, as confirmed by transmission electron microscopy (TEM), and the d spacing of the (002) planes is 0.343 nm, which is only slightly larger than that of pure graphite (0.335 nm), suggesting a random combination of graphitic and turbostratic stacking. After nanographitic functionalization, the BET surface area and total pore volume decreased from 928 m(2) g(-1) and 1.5 cm(3) g(-1) to 394 m(2) g(-1) and 0.7 cm(3) g(-1), respectively. Thermogravimetric analysis in air shows that the thermal stability of MSU-F-C-G is improved relative to that of MSU-F-C, and the one-step weight loss indicates that the nanographite is homogeneously functionalized on the MSU-F-C particles. When the resulting mesocellular carbon materials are used as electrode materials for an electric double layer capacitor (EDLC), the specific capacitances (C(sp)) of the MSU-F-C and MSU-F-C-G electrodes at 4 mV s(-1) are 109 F g(-1) and 93 F g(-1), respectively. The MSU-F-C-G electrode exhibited a very high area capacitance (C(area), 23.5 µF cm(-2)) compared with that of the MSU-F-C electrode (11.7 µF cm(-2)), which is attributed to the enhanced intraparticle conductivity by the nanographitic functionalization. MSU-F-C-G exhibited high capacity retention (52%) at a very high scan rate of 512 mV s(-1), while only a 23% capacity retention at 512 mV s(-1) was observed in the case of the MSU-F-C electrode. When applied as an anode in a lithium ion battery, a significant increase in the initial efficiency (44%), high reversible discharge capacity (580 mA h g(-1)) in the lower voltage region, and a higher rate capability were observed. The high rate capability of the MSU-F-C-G electrode as charge storage was due to the low resistance derived from the nanographitic functionalization.

12.
Phys Chem Chem Phys ; 13(23): 11060-6, 2011 Jun 21.
Article in English | MEDLINE | ID: mdl-21552641

ABSTRACT

An ordered mesoporous WO(3-X) with high electrical conductivity (m-WO(3-X)) was prepared and evaluated as an anode material for lithium ion batteries (LIBs). Ordered mesoporous tungsten trioxide (m-WO(3)) with an identical pore structure to that of m-WO(3-X) and bulk WO(3-X) (b-WO(3-X)) was prepared for the comparison purpose. An m-WO(3-X) electrode exhibited a high reversible capacity (748 mAh g(-1), 6.5 Li/W) and a high volumetric capacity (∼1500 mAh cm(-3)), which is comparable to the Li metal itself (ca. 2000 mAh cm(-3)). Also, an improved rate capability and a good cyclability were observed in the m-WO(3-X) electrode when compared with m-WO(3) and b-WO(3-X) electrodes. From electrochemical impedance spectroscopy (EIS) analysis, the advanced anode performance of the m-WO(3-X) electrode was probably attributed to large ordered mesopores and a high electrical conductivity. Differential scanning calorimetry (DSC) result displayed that the safety of m-WO(3-X) was more improved than those of graphite and Si anode materials.

13.
Chem Commun (Camb) ; 47(17): 4944-6, 2011 May 07.
Article in English | MEDLINE | ID: mdl-21424009

ABSTRACT

An ordered mesoporous carbon-silica-titania material was prepared using the tetra-constituents co-assembly method. As regards its anode performance in lithium ion batteries, the composite material anode exhibited a high capacity (875 mAh g(-1)), a higher initial efficiency (56%) and an improved rate.

14.
Chem Commun (Camb) ; 47(3): 1021-3, 2011 Jan 21.
Article in English | MEDLINE | ID: mdl-21069128

ABSTRACT

An ordered mesoporous WO(3-x) material was employed for use as a supercapacitor electrode. This material exhibited a high rate capability and an excellent capacitance (366 µF cm(-2), 639 F cm(-3)), which were probably attributed to the large ordered mesopores, high electrical conductivity, and high material density.

SELECTION OF CITATIONS
SEARCH DETAIL
...