Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Bioinformatics ; 18(1): 526, 2017 Nov 28.
Article in English | MEDLINE | ID: mdl-29183290

ABSTRACT

BACKGROUND: Cell-scaffold contact measurements are derived from pairs of co-registered volumetric fluorescent confocal laser scanning microscopy (CLSM) images (z-stacks) of stained cells and three types of scaffolds (i.e., spun coat, large microfiber, and medium microfiber). Our analysis of the acquired terabyte-sized collection is motivated by the need to understand the nature of the shape dimensionality (1D vs 2D vs 3D) of cell-scaffold interactions relevant to tissue engineers that grow cells on biomaterial scaffolds. RESULTS: We designed five statistical and three geometrical contact models, and then down-selected them to one from each category using a validation approach based on physically orthogonal measurements to CLSM. The two selected models were applied to 414 z-stacks with three scaffold types and all contact results were visually verified. A planar geometrical model for the spun coat scaffold type was validated from atomic force microscopy images by computing surface roughness of 52.35 nm ±31.76 nm which was 2 to 8 times smaller than the CLSM resolution. A cylindrical model for fiber scaffolds was validated from multi-view 2D scanning electron microscopy (SEM) images. The fiber scaffold segmentation error was assessed by comparing fiber diameters from SEM and CLSM to be between 0.46% to 3.8% of the SEM reference values. For contact verification, we constructed a web-based visual verification system with 414 pairs of images with cells and their segmentation results, and with 4968 movies with animated cell, scaffold, and contact overlays. Based on visual verification by three experts, we report the accuracy of cell segmentation to be 96.4% with 94.3% precision, and the accuracy of cell-scaffold contact for a statistical model to be 62.6% with 76.7% precision and for a geometrical model to be 93.5% with 87.6% precision. CONCLUSIONS: The novelty of our approach lies in (1) representing cell-scaffold contact sites with statistical intensity and geometrical shape models, (2) designing a methodology for validating 3D geometrical contact models and (3) devising a mechanism for visual verification of hundreds of 3D measurements. The raw and processed data are publicly available from https://isg.nist.gov/deepzoomweb/data/ together with the web -based verification system.


Subject(s)
Imaging, Three-Dimensional/methods , Models, Biological , Tissue Scaffolds/chemistry , Algorithms , Biocompatible Materials/chemistry , Bone Marrow Cells/cytology , Humans , Internet , Male , Mesenchymal Stem Cells/cytology , Microscopy, Atomic Force , Microscopy, Confocal , Microscopy, Electron, Scanning , User-Computer Interface , X-Ray Microtomography , Young Adult
2.
Proc Natl Acad Sci U S A ; 112(28): 8555-60, 2015 Jul 14.
Article in English | MEDLINE | ID: mdl-26124106

ABSTRACT

Human identification by fingerprints is based on the fundamental premise that ridge patterns from distinct fingers are different (uniqueness) and a fingerprint pattern does not change over time (persistence). Although the uniqueness of fingerprints has been investigated by developing statistical models to estimate the probability of error in comparing two random samples of fingerprints, the persistence of fingerprints has remained a general belief based on only a few case studies. In this study, fingerprint match (similarity) scores are analyzed by multilevel statistical models with covariates such as time interval between two fingerprints in comparison, subject's age, and fingerprint image quality. Longitudinal fingerprint records of 15,597 subjects are sampled from an operational fingerprint database such that each individual has at least five 10-print records over a minimum time span of 5 y. In regard to the persistence of fingerprints, the longitudinal analysis on a single (right index) finger demonstrates that (i) genuine match scores tend to significantly decrease when time interval between two fingerprints in comparison increases, whereas the change in impostor match scores is negligible; and (ii) fingerprint recognition accuracy at operational settings, nevertheless, tends to be stable as the time interval increases up to 12 y, the maximum time span in the dataset. However, the uncertainty of temporal stability of fingerprint recognition accuracy becomes substantially large if either of the two fingerprints being compared is of poor quality. The conclusions drawn from 10-finger fusion analysis coincide with the conclusions from single-finger analysis.


Subject(s)
Dermatoglyphics , Forensic Anthropology , Humans , Longitudinal Studies , Models, Statistical , Probability
3.
IEEE Trans Pattern Anal Mach Intell ; 34(3): 451-64, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21808092

ABSTRACT

The widespread deployment of Automated Fingerprint Identification Systems (AFIS) in law enforcement and border control applications has heightened the need for ensuring that these systems are not compromised. While several issues related to fingerprint system security have been investigated, including the use of fake fingerprints for masquerading identity, the problem of fingerprint alteration or obfuscation has received very little attention. Fingerprint obfuscation refers to the deliberate alteration of the fingerprint pattern by an individual for the purpose of masking his identity. Several cases of fingerprint obfuscation have been reported in the press. Fingerprint image quality assessment software (e.g., NFIQ) cannot always detect altered fingerprints since the implicit image quality due to alteration may not change significantly. The main contributions of this paper are: 1) compiling case studies of incidents where individuals were found to have altered their fingerprints for circumventing AFIS, 2) investigating the impact of fingerprint alteration on the accuracy of a commercial fingerprint matcher, 3) classifying the alterations into three major categories and suggesting possible countermeasures, 4) developing a technique to automatically detect altered fingerprints based on analyzing orientation field and minutiae distribution, and 5) evaluating the proposed technique and the NFIQ algorithm on a large database of altered fingerprints provided by a law enforcement agency. Experimental results show the feasibility of the proposed approach in detecting altered fingerprints and highlight the need to further pursue this problem.


Subject(s)
Biometry/methods , Dermatoglyphics , Algorithms , Databases, Factual , Humans , Pattern Recognition, Automated/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...