Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Small ; : e2400704, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38712580

ABSTRACT

Deformable alternating-current electroluminescent (ACEL) devices are of increasing interest because of their potential to drive innovation in soft optoelectronics. Despite the research focus on efficient white ACEL devices, achieving deformable devices with high luminance remains difficult. In this study, this challenge is addressed by fabricating white ACEL devices using color-conversion materials, transparent and durable hydrogel electrodes, and high-k nanoparticles. The incorporation of quantum dots enables the highly efficient generation of red and green light through the color conversion of blue electroluminescence. Although the ionic-hydrogel electrode provides high toughness, excellent light transmittance, and superior conductivity, the luminance of the device is remarkably enhanced by the incorporation of a high-k dielectric, BaTiO3. The fabricated ACEL device uniformly emits very bright white light (489 cd m-2) with a high color-rendering index (91) from both the top and bottom. The soft and tough characteristics of the device allow seamless operation in various deformed states, including bending, twisting, and stretching up to 400%, providing a promising platform for applications in a wide array of soft optoelectronics.

2.
J Phys Chem Lett ; 15(8): 2142-2151, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38364081

ABSTRACT

Over the last two decades, quantum-dot light-emitting diodes (QLEDs), also known as quantum dot (QD) electroluminescent devices, have gained prominence in next-generation display technologies, positioning them as potential alternatives to organic light-emitting diodes. Nonetheless, challenges persist in enhancing key device performances such as efficiency and lifetime, while those of blue QLEDs lag behind compared with green and red counterparts. In this Perspective, we discuss key factors affecting the photoluminescence characteristics of environmentally benign blue-emissive ternary ZnSeTe QDs, including composition, core/shell heterostructure, and surface ligand. Notably, we highlight the recent progress in breakthrough strategies to enhance blue QLED performance, examining the effects of the ZnSeTe QD attribute and device architecture on device performance. This Perspective offers insights into integrated aspects of QD material and device structure in overcoming challenges toward a high-performance blue ZnSeTe QLED.

3.
Materials (Basel) ; 15(23)2022 Nov 27.
Article in English | MEDLINE | ID: mdl-36499950

ABSTRACT

In typical color-by-blue mode-based quantum dot (QD) display devices, only part of the blue excitation light is absorbed by QD emitters, thus it is accompanied by the leakage of blue light through the devices. To address this issue, we offer, for the first time, the applicability of AuAg alloy nanoparticles (NPs) as effective blue light absorbers in InP QD-based color-by-blue platforms. For this, high-quality fluorescent green and red InP QDs with a double shell scheme of ZnSe/ZnS were synthesized and embedded in a transparent polymer film. Separately, a series of Au/Ag ratio-varied AuAg NPs with tunable plasmonic absorption peaks were synthesized. Among them, AuAg NPs possessing the most appropriate absorption peak with respect to spectral overlap with blue emission are chosen for the subsequent preparation of AuAg NP polymeric films with varied NP concentrations. A stack of AuAg NP polymeric film on top of InP QD film is then placed remotely on a blue light-emitting diode, successfully resulting in systematically progressive suppression of blue light leakage with increasing AuAg NP concentration. Furthermore, the beneficial function of the AuAg NP polymeric overlayer in mitigating undesirable QD excitation upon exposure to ambient lights was further examined.

4.
Nanoscale Horiz ; 6(2): 168-176, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33443279

ABSTRACT

The electroluminescent (EL) performances of quantum dot-light-emitting diodes (QLEDs) based on either high-quality CdSe- or Cd-free quantum dots (QDs) have been greatly improved during the last decade, exclusively aiming at monochromatic devices for display applications. Meanwhile, work on white lighting QLEDs integrated particularly with Cd-free QDs remains highly underdeveloped. In this work, the solution-processed fabrication of tricolored white lighting QLEDs comprising three environmentally benign primary color emitters of II-VI blue and green ZnSeTe and I-III-VI red Zn-Cu-In-S (ZCIS) QDs is explored. The emitting layer (EML) consists of two different QD layers stacked on top of the other with an ultrathin ZnMgO nanoparticle buffer layer inserted in the middle, with both blue and green QDs mixed in one layer, and red QDs placed in a separate layer. The stacking order of the bilayered EML architecture is found to control the exciton recombination zone and thus crucially determine the EL performance of the device. The optimal tricolored white device yields outstanding EL performances such as 5461 cd m-2 luminance, 5.8% external quantum efficiency, and 8.4 lm W-1 power efficiency, along with a near-ideal color rendering index of 95, corresponding to the record quantities reported among Cd-free white lighting QLEDs.

5.
Chem Commun (Camb) ; 56(59): 8285-8288, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32573592

ABSTRACT

Broadband near-infrared CuInS2/ZnS quantum dots with up to 94.8% quantum yield were synthesized with fast precursor decomposition leading to monomer conversion improvement. In the mini-LED package, the device showed high power efficiency and stability was also demonstrated with a penetration test and vein imaging showing its potential biomedical application in the theranostics field.

6.
ACS Appl Mater Interfaces ; 11(49): 46062-46069, 2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31746194

ABSTRACT

Considering a strict global environmental regulation, fluorescent quantum dots (QDs) as key visible emitters in the next-generation display field should be compositionally non-Cd. When compared to green and red emitters obtainable from size-controlled InP QDs, development of non-Cd blue QDs remains stagnant. Herein, we explore the synthesis of non-Cd, ZnSe-based QDs with binary and ternary compositions toward blue photoluminescence (PL). First, the size increment of binary ZnSe QDs is attempted by a multiply repeated growth until blue PL is attained. Although this approach offers a relevant blue color, excessively large-sized ZnSe QDs inevitably entail a low PL quantum yield. As an alternative strategy to the above size enlargement, the alloying of high-band gap ZnSe with lower-band gap ZnTe in QD synthesis is carried out. These alloyed ternary ZnSeTe QDs after ZnS shelling exhibit a systematically tunable PL of 422-500 nm as a function of Te/Se ratio. Analogous to the state-of-the-art heterostructure of InP QDs with a double-shelling scheme, an inner shell of ZnSe is newly inserted with different thicknesses prior to an outer shell of ZnS, where the effects of the thickness of ZnSe inner shell on PL properties are examined. Double-shelled ZnSeTe/ZnSe/ZnS QDs with an optimal thickness of the ZnSe inner shell are then employed for all-solution-processed fabrication of a blue QD light-emitting diode (QLED). The present blue QLED as the first ZnSeTe QD-based device yields a peak luminance of 1195 cd/m2, a current efficiency of 2.4 cd/A, and an external quantum efficiency of 4.2%, corresponding to the record values reported from non-Cd blue devices.

7.
Materials (Basel) ; 12(14)2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31311083

ABSTRACT

The doping of transition metal ions, such as Cu+ and Mn2+ into a quantum dot (QD) host is one of the useful strategies in tuning its photoluminescence (PL). This study reports on a two-step synthesis of Cu-doped InP QDs double-shelled with ZnSe inner shell/ZnS outer shell. As a consequence of the double shelling-associated effective surface passivation along with optimal doping concentrations, Cu-doped InP/ZnSe/ZnS (InP:Cu/ZnSe/ZnS) QDs yield single Cu dopant-related emissions with high PL quantum yields of 57-58%. This study further attempted to tune PL of Cu-doped QDs through the variation of InP core size, which was implemented by adopting different types of Zn halide used in core synthesis. As the first application of doped InP QDs as electroluminescent (EL) emitters, two representative InP:Cu/ZnSe/ZnS QDs with different Cu concentrations were then employed as active emitting layers of all-solution-processed, multilayered QD-light-emitting diodes (QLEDs) with the state-of-the-art hybrid combination of organic hole transport layer plus inorganic electron transport layers. The EL performances, such as luminance and efficiencies of the resulting QLEDs with different Cu doping concentrations, were compared and discussed.

8.
ACS Appl Mater Interfaces ; 11(8): 8250-8257, 2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30698949

ABSTRACT

On the basis of bluish-emitting double-shelled quantum dots (QDs) of Zn-Cu-Ga-S (ZCGS)/ZnS/ZnS, Mn doping into ZCGS host with different Mn/Cu concentrations is implemented via surface adsorption and lattice diffusion. The resulting double-shelled Mn-doped ZCGS (ZCGS/Mn) QDs exhibit a distinct Mn2+ 4T1-6A1 emission as a consequence of effective lattice incorporation simultaneously with host intragap states-involving emissions of free-to-bound and donor-acceptor pair recombinations. The relative contribution of Mn emission to the overall photoluminescence (PL) is consistently proportional to its concentration, resulting in tunable PL from bluish, white, to reddish white. Regardless of Mn doping and its concentration, all QDs possess high PL quantum yield levels of 74-79%. Those undoped and doped QDs are then employed as an emitting layer (EML) of all-solution-processed QD-light-emitting diodes (QLEDs) with hybrid charge transport layers and their electroluminescence (EL) is compared. Compared to undoped QDs, doped analogues give rise to a huge spectral disparity of EL versus PL, specifically showing a near-complete quenching of Mn2+ EL. This unexpected observation is rationalized primarily by considering unbalanced carrier injection to QD EML on the basis of energetic alignment of the present QLED and rapid trapping of holes injected at intragap states of QDs.

9.
Opt Lett ; 43(21): 5287-5290, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30382989

ABSTRACT

Together with III-V InP, chalcopyrite I-III-VI metal chalcogenides particularly with the compositions of A-B-S (A=Cu+, Ag+, B=In3+, Ga3+) are regarded as an emerging non-Cd class for synthesis of visible-emitting colloidal quantum dots (QDs) and the following fabrication of QD-light-emitting diodes (QLEDs). To date, the composition of I-III-VI QDs which were exploited for QLED fabrication remains highly limited, with most devices demonstrated from Cu-In-S-based ones. Herein, we explore the synthesis of two Ga-based I-III-VI QDs of Ag-Ga-S (AGS) and Cu-Ga-S (CGS) QDs and their application to QLED fabrication. Using cyan AGS/ZnS and azure CGS/ZnS core/shell QDs, all-solution-processed, multilayered QLEDs with a hybrid combination of organic hole transport layer and inorganic electron transport layer are fabricated and compared. We observe that CGS QLED by far outperforms in luminance and efficiency its AGS counterpart, which is ascribable to the differences in both electronic band structure and core/shell structure between two comparative QDs.

10.
RSC Adv ; 8(18): 10057-10063, 2018 Mar 05.
Article in English | MEDLINE | ID: mdl-35540847

ABSTRACT

Silica is the most commonly used oxide encapsulant for passivating fluorescent quantum dots (QDs) against degradable conditions. Such a silica encapsulation has been conventionally implemented via a Stöber or reverse microemulsion process, mostly targeting CdSe-based QDs to date. However, both routes encounter a critical issue of considerable loss in photoluminescence (PL) quantum yield (QY) compared to pristine QDs after silica growth. In this work, we explore the embedment of multishelled InP/ZnSeS/ZnS QDs, whose stability is quite inferior to CdSe counterparts, in a silica matrix by means of a tetramethyl orthosilicate-based, waterless, catalyst-free synthesis. It is revealed that the original QY (80%) of QDs is nearly completely retained in the course of the present silica embedding reaction. The resulting QD-silica composites are then placed in degradable conditions such UV irradiation, high temperature/high humidity, and operation of an on-chip-packaged light-emitting diode (LED) to attest to the efficacy of silica passivation on QD stability. Particularly, the promising results with regard to device efficiency and stability of the on-chip-packaged QD-LED firmly suggest the effectiveness of the present silica embedding strategy in not only maximally retaining QY of QDs but effectively passivating QDs, paving the way for the realization of a highly efficient, robust QD-LED platform.

SELECTION OF CITATIONS
SEARCH DETAIL
...