Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36502101

ABSTRACT

"A Picture is worth a thousand words". Given an image, humans are able to deduce various cause-and-effect captions of past, current, and future events beyond the image. The task of visual commonsense generation has the aim of generating three cause-and-effect captions for a given image: (1) what needed to happen before, (2) what is the current intent, and (3) what will happen after. However, this task is challenging for machines, owing to two limitations: existing approaches (1) directly utilize conventional vision-language transformers to learn relationships between input modalities and (2) ignore relations among target cause-and-effect captions, but consider each caption independently. Herein, we propose Cause-and-Effect BART (CE-BART), which is based on (1) a structured graph reasoner that captures intra- and inter-modality relationships among visual and textual representations and (2) a cause-and-effect generator that generates cause-and-effect captions by considering the causal relations among inferences. We demonstrate the validity of CE-BART on the VisualCOMET and AVSD benchmarks. CE-BART achieved SOTA performance on both benchmarks, while an extensive ablation study and qualitative analysis demonstrated the performance gain and improved interpretability.


Subject(s)
Language , Learning , Humans
2.
Sensors (Basel) ; 22(17)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36080822

ABSTRACT

This paper considers a Deep Convolutional Neural Network (DCNN) with an attention mechanism referred to as Dual-Scale Doppler Attention (DSDA) for human identification given a micro-Doppler (MD) signature induced as input. The MD signature includes unique gait characteristics by different sized body parts moving, as arms and legs move rapidly, while the torso moves slowly. Each person is identified based on his/her unique gait characteristic in the MD signature. DSDA provides attention at different time-frequency resolutions to cater to different MD components composed of both fast-varying and steady. Through this, DSDA can capture the unique gait characteristic of each person used for human identification. We demonstrate the validity of DSDA on a recently published benchmark dataset, IDRad. The empirical results show that the proposed DSDA outperforms previous methods, using a qualitative analysis interpretability on MD signatures.


Subject(s)
Forensic Anthropology , Neural Networks, Computer , Female , Gait , Humans , Male , Ultrasonography, Doppler
SELECTION OF CITATIONS
SEARCH DETAIL
...