Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38329924

ABSTRACT

The search for high-performance catalysts to improve the catalytic activity for an oxygen reduction reaction (ORR) is crucial for developing a proton exchange membrane fuel cell. Using the first-principles method, we have performed computational screening on a series of transition metal (TM) atoms embedded in monolayer Nb2S2C to enhance the ORR activity. Through the scaling relationship and volcano plot, our results reveal that the introduction of a single Ni or Rh atom through substitutional doping into monolayer Nb2S2C yields promising ORR catalysts with low overpotentials of 0.52 and 0.42 V, respectively. These doped atoms remain intact on the monolayer Nb2S2C even at elevated temperatures. Importantly, the catalytic activity of the Nb2S2C doped with a TM atom can be effectively correlated with an intrinsic descriptor, which can be computed based on the number of d orbital electrons and the electronegativity of TM and O atoms.

2.
Phys Chem Chem Phys ; 24(48): 29952-29960, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36468660

ABSTRACT

The electromechanical properties of monolayer 1-T NiTe2 under charge actuation were investigated using first-principles density functional theory (DFT) calculations. Monolayer 1-T NiTe2 in its pristine form has a work area density per cycle of up to 5.38 MJ m-3 nm upon charge injection and it can generate a strain and a stress of 1.51% and 0.96 N m-1, respectively. We found that defects in the form of vacancies can be exploited to modulate the electromechanical properties of this material. The presence of Ni-vacancies can further enhance the generated stress by 22.5%. On the other hand, with Te-vacancies, it is possible to improve the work area density per cycle by at least 145% and also to enhance the induced strain from 1.51% to 2.92%. The effect of charge polarity on the contraction and expansion of monolayer 1T-NiTe2 was investigated. Due to its excellent environmental stability and good electromechanical properties, monolayer NiTe2 is considered to be a promising electrode material for electroactive polymer (EAP) based actuators.

3.
Phys Chem Chem Phys ; 23(42): 24222-24232, 2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34668497

ABSTRACT

Based on first-principles calculations, we propose a new two-dimensional (2D) van der Waals (vdW) heterostructure that can be used as a photocatalyst for water splitting. The heterostructure consists of vertically stacked 2D NbSe2H and graphene-like ZnO (g-ZnO). Depending on the stacking orders, we identified two configurations that have high binding energies with an energy band gap of >2.6 eV. These 2D systems form a type-II heterostructure which enables the separation of photoexcited electrons and holes. The presence of a strong electrostatic potential difference across the 2D NbSe2H and g-ZnO interface is expected to suppress the electron-hole recombination leading to an enhancement in the efficiency of the photocatalytic activity. Our study also shows that the 2D NbSe2H/g-ZnO vdW heterostructure has good thermodynamic properties for water splitting. Furthermore, the optical absorption of the 2D NbSe2H/g-ZnO vdW heterostructure extends into the visible light region. Our results suggest that the 2D NbSe2H/g-ZnO vdW heterostructure is a promising photocatalytic material for water splitting.

4.
J Chem Phys ; 139(20): 204702, 2013 Nov 28.
Article in English | MEDLINE | ID: mdl-24289364

ABSTRACT

We grew graphene epitaxially on 6H-SiC(0001) substrate by the simulated annealing method. The mechanisms that govern the growth process were investigated by testing two empirical potentials, namely, the widely used Tersoff potential [J. Tersoff, Phys. Rev. B 39, 5566 (1989)] and its more refined version published years later by Erhart and Albe [Phys. Rev. B 71, 035211 (2005)]. Upon contrasting the results obtained by these two potentials, we found that the potential proposed by Erhart and Albe is generally more physical and realistic, since the annealing temperature at which the graphene structure just coming into view at approximately 1200 K is unambiguously predicted and close to the experimentally observed pit formation at 1298 K within which the graphene nucleates. We evaluated the reasonableness of our layers of graphene by calculating carbon-carbon (i) average bond-length, (ii) binding energy, and (iii) pair correlation function. Also, we compared with related experiments the various distance of separation parameters between the overlaid layers of graphene and substrate surface.

SELECTION OF CITATIONS
SEARCH DETAIL
...