Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Vet Sci ; 9(7)2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35878345

ABSTRACT

The genus Corynebacterium, composed of Gram-positive diphtheroid rod-shaped bacteria, induces severe diseases, such as Corynebacterium-associated hyperkeratosis and pseudotuberculosis, in immunodeficient mice. We isolated and identified a total of 165 strains of Corynebacterium species from experimental mice in Korean laboratories, diagnosed using several methods. When identified based on molecular methods, namely, 16S rRNA and rpoB gene sequence analysis, the main Corynebacterium species isolated in Korean laboratory mice were C. mastitidis (44.8%, n = 74), C. bovis (25.5%, n = 42), C. lowii (21.2%, n = 35), and C. amycolatum (8.5%, n = 14). Diagnoses were also performed using matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) and biochemical methods. MALDI-TOF MS yielded results that were 77.9% identical to the molecular identification results, whereas biochemical methods showed only 15.5% identical to molecular identification, partly owing to difficulties in distinguishing among C. mastitidis strains. Collectively, our findings indicate that molecular biological methods are better suited for detecting and identifying Corynebacterium species candidates isolated from mice than biochemical methods. Because of limitations associated with the use of MALDI-TOF MS, more precise results will be obtained by complementing this approach with other methods when used for rapid identification testing.

2.
Int J Mol Sci ; 22(23)2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34884616

ABSTRACT

Topoisomerase IIIß (Top3ß), the only dual-activity topoisomerase in mammals that can change topology of both DNA and RNA, is known to be associated with neurodevelopment and mental dysfunction in humans. However, there is no report showing clear associations of Top3ß with neuropsychiatric phenotypes in mice. Here, we investigated the effect of Top3ß on neuro-behavior using newly generated Top3ß deficient (Top3ß-/-) mice. We found that Top3ß-/- mice showed decreased anxiety and depression-like behaviors. The lack of Top3ß was also associated with changes in circadian rhythm. In addition, a clear expression of Top3ß was demonstrated in the central nervous system of mice. Positron emission tomography/computed tomography (PET/CT) analysis revealed significantly altered connectivity between many brain regions in Top3ß-/- mice, including the connectivity between the olfactory bulb and the cerebellum, the connectivity between the amygdala and the olfactory bulb, and the connectivity between the globus pallidus and the optic nerve. These connectivity alterations in brain regions are known to be linked to neurodevelopmental as well as psychiatric and behavioral disorders in humans. Therefore, we conclude that Top3ß is essential for normal brain function and behavior in mice and that Top3ß could be an interesting target to study neuropsychiatric disorders in humans.


Subject(s)
Anxiety Disorders/pathology , Behavior, Animal , Circadian Rhythm , Connectome , DNA Topoisomerases, Type I/physiology , Depression/pathology , Animals , Anxiety Disorders/etiology , Depression/etiology , Female , Male , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Mice, Knockout
3.
Int J Med Sci ; 17(6): 815-823, 2020.
Article in English | MEDLINE | ID: mdl-32218703

ABSTRACT

Importin-11 (Ipo11) is a novel member of the human importin family of transport receptors (karyopherins), which are known to mediate the nucleocytoplasmic transport of protein and RNA cargos. Despite its role in the transport of protein, we found that knockout of Ipo11 nuclear import factor affects normal embryonic development and govern embryo-lethal phenotypes in mice. In this study, we for the first time produced a mouse line containing null mutation in Ipo11 gene utilized by gene trapping. The Ipo11-/- embryos showed an embryonic lethal phenotype. The Ipo11-/- embryos showed a reduced size at embryonic day 10.5 (E10.5) when compared with Ipo11+/+ or Ipo11+/- embryos and died by E11.5. Whereas Ipo11+/- mice were healthy and fertile, and there was no detectable changes in embryonic lethality and phenotype when reviewed. In the X-gal staining with the Ipo11-/- or Ipo11+/- embryos, strong X-gal staining positivity was detected systematically in the whole mount embryos at E10.5, although almost no X-gal positivity was detected at E9.5, indicating that the embryos die soon after the process of Ipo11 expression started. These results indicate that Ipo11 is essential for the normal embryonic development in mice.


Subject(s)
Embryonic Development/genetics , Karyopherins/genetics , Animals , Embryo, Mammalian/metabolism , Female , Gene Expression Regulation, Developmental/genetics , Humans , Karyopherins/antagonists & inhibitors , Mice , Mice, Knockout , Pregnancy
4.
Int J Med Sci ; 16(12): 1557-1563, 2019.
Article in English | MEDLINE | ID: mdl-31839743

ABSTRACT

E2F3, a member of the E2F family, plays a critical role in cell cycle and proliferation by targeting downstream, retinoblastoma (RB) a tumor suppressor family protein. The purpose of this study, was to investigate the role and function of E2F3 in vivo. We examined phenotypic abnormalities, by deletion of the E2f3 gene in mice. Complete ablation of the E2F3 was fully penetrant, in the pure C57BL/6N background. The E2f3+/ - mouse embryo developed normally without fatal disorder. However, they exhibited reduced body weight, growth retardation, skeletal imperfection, and poor grip strength ability. Findings suggest that E2F3 has a pivotal role in muscle and bone development, and affect normal mouse growth.


Subject(s)
Bone Development/genetics , E2F3 Transcription Factor/genetics , Embryonic Development/genetics , Muscle, Skeletal/growth & development , Animals , Apoptosis/genetics , Body Weight/genetics , Cell Cycle/genetics , Cell Proliferation/genetics , Embryo, Mammalian , Humans , Mice , Mice, Knockout , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiopathology , Phenotype
5.
Biomed Chromatogr ; 33(2): e4388, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30238481

ABSTRACT

In this study, we developed a method for the determination of Penicillium griseofulvum-oriented pyripyropene A (PPPA), a selective inhibitor of acyl-coenzyme A:cholesterol acyltransferase 2, in mouse and human plasma and validated it using liquid chromatography-tandem mass spectrometry. Pyripyropene A (PPPA) and an internal standard, carbamazepine, were separated using a Xterra MS C18 column with a mixture of acetonitrile and 0.1% formic acid as the mobile phase. The ion transitions monitored in positive-ion mode [M + H]+ of multiple-reaction monitoring (MRM) were m/z 148.0 from m/z 584.0 for PPPA and m/z 194.0 from m/z 237.0 for the internal standard. The detector response was specific and linear for PPPA at concentrations within the range from 1 to 5,000 ng/mL. The intra-/inter-day precision and accuracy of the method was acceptable by the criteria for assay validation. The matrix effects of PPPA ranged from 97.6 to 104.2% and from 93.3 to 105.3% in post-preparative mouse and human plasma samples, respectively. PPPA was also stable under various processing and/or handling conditions. Finally, PPPA concentrations in the mouse plasma samples could be measured after intravenous, intraperitoneal, or oral administration of PPPA, suggesting that the assay is useful for pharmacokinetic studies on mice and applicable to human studies.


Subject(s)
Chromatography, Liquid/methods , Penicillium/chemistry , Pyridines/blood , Pyridines/pharmacokinetics , Sesquiterpenes/blood , Sesquiterpenes/pharmacokinetics , Tandem Mass Spectrometry/methods , Animals , Drug Stability , Linear Models , Male , Mice , Mice, Inbred ICR , Pyridines/chemistry , Reproducibility of Results , Sensitivity and Specificity , Sesquiterpenes/chemistry , Sterol O-Acyltransferase/antagonists & inhibitors , Sterol O-Acyltransferase 2
6.
Exp Biol Med (Maywood) ; 243(5): 408-417, 2018 03.
Article in English | MEDLINE | ID: mdl-29409347

ABSTRACT

FRY like transcription coactivator ( Fryl) gene located on chromosome 5 is a paralog of FRY microtubule binding protein ( Fry) in vertebrates. It encodes a protein with unknown functions. Fryl gene is conserved in various species ranging from eukaryotes to human. Although there are several reports on functions of Fry gene, functions of Fryl gene remain unclear. A mouse line containing null mutation in Fryl gene by gene trapping was produced in this study for the first time. The survival and growth of Fryl-/- mice were observed. Fryl gene expression levels in mouse tissues were determined and histopathologic analyses were conducted. Most Fryl-/- mice died soon after birth. Rare Fryl-/- survivors showed growth retardation with significantly lower body weight compared to their littermate controls. Although they could breed, more than half of Fryl-/- survivors died of hydronephrosis before age 1. No abnormal histopathologic lesion was apparent in full-term embryo or adult tissues except the kidney. Abnormal lining cell layer detachments from walls of collecting and convoluted tubules in kidneys were apparent in Fryl-/- neonates and full-term embryos. Fryl gene was expressed in renal tubular tissues including the glomeruli and convoluted and collecting tubules. This indicates that defects in tubular systems are associated with Fryl functions and death of Fryl-/- neonates. Fryl protein is required for normal development and functional maintenance of kidney in mice. This is the first report of in vivo Fryl gene functions. Impact statement FRY like transcription coactivator ( Fryl) gene is conserved in various species ranging from eukaryotes to human. It expresses a protein with unknown function. We generated a Fryl gene mutant mouse line and found that most homozygous mice died soon after their birth. Rare Fryl-/- survivors showed growth retardation with significantly lower body weight compared to their littermate controls. Although they could breed, more than half of Fryl-/- survivors died of hydronephrosis before age 1. Full-term mutant embryos showed abnormal collecting and convoluted tubules in kidneys where Fryl gene was expressed. Collectively, these results indicate that Fryl protein is required for normal development and functional maintenance of kidney in mice. To the best of our knowledge, this is the first report on in vivo Fryl gene functions.


Subject(s)
Hydronephrosis/genetics , Intercellular Signaling Peptides and Proteins/genetics , Kidney Glomerulus/embryology , Kidney Tubules/embryology , Membrane Proteins/genetics , Animals , Cell Line , Female , Hydronephrosis/mortality , Intercellular Signaling Peptides and Proteins/deficiency , Kidney Glomerulus/pathology , Kidney Tubules/pathology , Male , Membrane Proteins/deficiency , Mice , Mice, Inbred C57BL , Mice, Knockout
7.
Environ Toxicol Pharmacol ; 40(1): 191-8, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26143167

ABSTRACT

This study investigated the time-course of 1,3-dichloro-2-propanol (1,3-DCP)-induced hepatotoxicity and the molecular mechanism of its oxidative stress and apoptotic changes in rats. Thirty-six male rats were randomly assigned to six groups of six rats each and were administered a single oral dose of 1,3-DCP (90 mg/kg) or its vehicle. 1,3-DCP caused acute hepatic damage, as evidenced by marked increases in serum aminotransferase, alkaline phosphatase, and histopathological alterations. These functional and histopathological changes in the liver peaked at 12h after administration and then decreased progressively. Oxidative stress indices were increased significantly at 6h, peaked at 12h, and then decreased progressively. The number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)- and caspase-3-positive cells increased after 6h, peaked at 12 and 24h, and then decreased. The protein levels of phosphorylated mitogen-activated protein kinases (MAPKs) including p-Erk1/2 and p-JNK showed a similar trend to the numbers of TUNEL- and caspase-3-positive cells. These results indicate that 1,3-DCP increases oxidative stress, nuclear translocation of Nrf2, and expression of Nrf2-targeted genes, followed by increased functional and histopathological alterations in the liver. The increase in hepatocellular apoptosis induced by 1,3-DCP may be related to oxidative stress-mediated MAPK activation.


Subject(s)
Liver/drug effects , alpha-Chlorohydrin/analogs & derivatives , Animals , Apoptosis/drug effects , Male , Oxidative Stress/drug effects , Rats , Rats, Sprague-Dawley , alpha-Chlorohydrin/toxicity
8.
J Vet Sci ; 14(3): 257-62, 2013.
Article in English | MEDLINE | ID: mdl-23820201

ABSTRACT

Vitamin D3 up-regulated protein 1 (VDUP1) is a potent growth suppressor that inhibits tumor cell proliferation and cell cycle progression when overexpressed. In a previous study, we showed that VDUP1 knockout (KO) mice exhibited accelerated liver regeneration because such animals could effectively control the expression of cell cycle regulators that drive the G1-to-S phase progression. In the present study, we further investigated the role played by VDUP1 in initial priming of liver regeneration. To accomplish this, VDUP1 KO and wild-type (WT) mice were subjected to 70% partial hepatectomy (PH) and sacrificed at different times after surgery. The hepatic levels of TNF-α and IL-6 increased after PH, but there were no significant differences between VDUP1 KO and WT mice. Nuclear factor-κB (NF-κB), c-Jun-N-terminal kinase (JNK), and signal transducer and activator of transcription 3 (STAT-3) were activated much earlier and to a greater extent in VDUP1 KO mice after PH. A single injection of TNF-α or IL-6 caused rapid activation of JNK and STAT-3 expression in both mice, but the responses were stronger and more sustained in VDUP1 KO mice. In conclusion, our findings provide evidence that VDUP1 plays a role in initiation of liver regeneration.


Subject(s)
Carrier Proteins/genetics , Gene Expression Regulation , Hepatocytes/cytology , Liver/physiology , Regeneration , Thioredoxins/genetics , Animals , Blotting, Western , Carrier Proteins/metabolism , Cell Proliferation , Hepatectomy , Hepatocytes/physiology , JNK Mitogen-Activated Protein Kinases/genetics , JNK Mitogen-Activated Protein Kinases/metabolism , Male , Mice, Knockout , NF-kappa B/genetics , NF-kappa B/metabolism , Polymerase Chain Reaction , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Thioredoxins/metabolism
9.
Gut ; 61(1): 53-63, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21917648

ABSTRACT

OBJECTIVE: Vitamin D(3) upregulated protein 1 (VDUP1) is a potent tumour suppressor whose expression is dramatically reduced in various types of human cancers, including gastric cancer. However, the precise mechanisms underlying tumour development remain unclear. In the present study, the authors examined the effect of VDUP1 on Helicobacter pylori-induced gastric carcinogenesis in mice. DESIGN: Gastric cancer was generated in VDUP1 knockout (KO) and wild-type mice using a combination of N-methyl-N-nitrosourea treatment and H pylori infection. Fifty weeks after treatment, gastric tissues from both types of mice were examined by histopathology, immunohistochemistry and immunoblotting. In vitro tests on the human gastric cancer cell line, AGS, were also performed to identify the underlying mechanisms of cancer development. RESULTS: The overall incidence of gastric cancer was significantly higher in VDUP1 KO mice than in wild-type mice. Similarly, VDUP1 KO mice showed more severe chronic gastritis, glandular atrophy, foveolar hyperplasia, metaplasia and dysplasia. Although no differences in the apoptotic index were apparent, lack of VDUP1 increased the rate of gastric epithelial cell proliferation in non-cancerous stomachs, with corresponding increases in tumour necrosis factor alpha (TNFα) level, nuclear transcription factor kappa B (NF-κB) activation and cyclooxygenase-2 (COX-2) expression. An in vitro study showed that H pylori-associated cell proliferation and induction of TNFα, NF-κB and COX-2 were inhibited in cells transfected with VDUP1. In addition, overexpression of VDUP1 in AGS cells suppressed TNFα-induced NF-κB activation and COX-2 expression. CONCLUSION: Our data show that VDUP1 negatively regulates H pylori-associated gastric carcinogenesis, in part by disrupting cell growth and inhibiting the induction of TNFα, NF-κB and COX-2. These findings provide important insights into the role of VDUP1 in H pylori-associated tumourigenesis.


Subject(s)
Biomarkers, Tumor/metabolism , Carrier Proteins/metabolism , Helicobacter Infections/complications , Helicobacter pylori , Stomach Neoplasms/etiology , Thioredoxins/metabolism , Animals , Biomarkers, Tumor/physiology , Carrier Proteins/physiology , Cell Growth Processes/physiology , Cell Line, Tumor , Cyclooxygenase 2/metabolism , Humans , Methylnitrosourea/adverse effects , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/metabolism , Random Allocation , Stomach Neoplasms/metabolism , Thioredoxins/physiology , Tissue Array Analysis , Tumor Necrosis Factor-alpha/metabolism
10.
Lab Anim Res ; 27(3): 205-12, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21998609

ABSTRACT

Embryonic stem cells (ESCs) are an emerging source for cell-based therapies aimed at repairing damaged organ tissues; however, the efficiency of directed differentiation is low and refinement of differentiation protocols is hampered by incomplete understanding of the mechanisms involved in this process. To find new compounds which can improve the efficiency of directed differentiation of ESCs to cardiomyocytes, we screened several thousand chemical compounds and identified a promising group. All of the compounds found have a common structure of 1H-pyrrole,2,2'-(phenylmethylene)bis. Here we report the potential mechanism of action for 31002 which showed the strongest activity among the compounds selected. In the presence of 31002, 15 times more cardiomyocytes differentiated from ESCs, i.e., 3.5% to 52% of total differentiated cells. Moreover, the cardiomyocytes showed functional characteristics including rhythmic beating and marker gene expression. 31002 inhibited the down-regulation of genes related to the three germ layers in the late stage of ESCs differentiation, implying that 31002 supports a continuous fate commitment of undifferentiated ESCs to the cardiac lineage by prolonging the three germ layer stages. Therefore, compounds in this group, including 31002, might be useful as directed cardiomyogenic differentiation-inducers to produce cells for use in cell therapy aimed at restoring damaged heart tissue.

11.
Eur J Pharmacol ; 668(3): 459-66, 2011 Oct 15.
Article in English | MEDLINE | ID: mdl-21827747

ABSTRACT

B cell-activating factor (BAFF) is a key regulator of B lymphocyte development. Signals from BAFF are transmitted through binding to a specific BAFF receptor (BAFF-R). Here, we established screening method to find a specific inhibitor for the interference of BAFF-BAFF-R interactions. We screened oxazole-4-carbonylguanidine derivatives and selected KR33426, [2-(2,5-dichlorophenyl)-5-methyloxazol-4yl]carbonylguanidine, as a candidate to interfere BAFF-BAFF-R interactions. KR33426 inhibited BAFF-mediated anti-apoptotic effect on splenocytes as judged by hypodiploid cell formation. KR33426 also increased the degradation of procaspase-3 that was inhibited by BAFF protein. In addition, we examined whether KR33426 was effective on the treatment of systemic lupus erythematosus-like symptom in MRL(lpr/lpr) mouse. When 5 or 10mg/kg KR33426 was intraperitoneally administered to MRL(lpr/lpr) mice for 4 weeks, histopathological changes were ameliorated in the narrowed space between renal glomerulus and glomerulus capsule. KR33426 reduced B220(+) B cell population and B cell mitogen, lipopolysaccharide-stimulated lymphocyte proliferation in splenocytes. KR33426 attenuated an increase in CD43(-)IgM(+) immature pro-B and a decrease in CD21(+) IgM(+) T2-B and IgD(+) IgM(-)recirculating-B cells on B cell development. Data show that KR33426 inhibits BAFF-BAFF-R interactions and it is effective on the treatment of systemic lupus erythematosus-like symptom in MRL(lpr/lpr) mice. Thus, it suggests that KR33426 is a novel candidate to develop anti-autoimmune therapeutics by the interference of BAFF-BAFF-R interactions, specifically.


Subject(s)
Guanidines/pharmacology , Lupus Erythematosus, Systemic/drug therapy , Oxazoles/pharmacology , Animals , Apoptosis/drug effects , B-Cell Activating Factor/metabolism , B-Cell Activation Factor Receptor/metabolism , B-Lymphocytes/drug effects , B-Lymphocytes/pathology , Cell Proliferation/drug effects , Disease Models, Animal , Drug Evaluation, Preclinical , Female , Guanidines/therapeutic use , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/metabolism , Mice , Spleen/immunology
12.
J Hepatol ; 54(6): 1168-76, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21145821

ABSTRACT

BACKGROUND & AIMS: Liver regeneration is a complicated process involving a variety of interacting factors. Vitamin D3 up-regulated protein 1 (VDUP1) is a potent growth suppressor that, upon over-expression, inhibits tumor cell proliferation and cell-cycle progression. Here, we investigated the function of VDUP1 in liver regeneration following hepatectomy in mice. METHODS: Liver regeneration after 70% partial hepatectomy (PH) was compared in VDUP1 knockout (KO) and wild-type (WT) mice, and the activities of proliferative- and cell-cycle-related signaling pathways were measured. RESULTS: Compared with WT mice, liver recovery was significantly accelerated in VDUP1 KO mice during the first day after PH, in association with increased DNA synthesis. Consistent with this observation, the expression levels of key cell-cycle regulatory proteins, including cyclin D, cyclin E, cyclin-dependent kinase 4 (CDK4), p21, and p27, were markedly altered in the livers of VDUP1 KO mice. Induction of growth factors and activation of proliferative signaling pathway components including extracellular signal-regulated kinase 1/2 (ERK1/2), Akt, glycogen synthase kinase 3ß (GSK3ß), mammalian target of rapamycin (mTOR), and p70S6 kinase (p70(S6K)), occurred much earlier and to a greater extent in VDUP1 KO mouse livers. In addition, primary hepatocytes isolated from VDUP1 KO mice displayed increased activation of ERK1/2 and Akt in response to HGF and TGF-α. CONCLUSIONS: Our results reveal an important role for VDUP1 in the regulation of proliferative signaling during liver regeneration. Altered activation of genes involved in ERK1/2 and Akt signaling pathways may explain the accelerated growth responses seen in VDUP1 KO mice.


Subject(s)
Carrier Proteins/physiology , Liver Regeneration/physiology , Thioredoxins/physiology , Animals , Carrier Proteins/antagonists & inhibitors , Carrier Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Proliferation , Cell Size , Cyclins/metabolism , Hepatectomy , Hepatocyte Growth Factor/pharmacology , Hepatocytes/cytology , Hepatocytes/drug effects , Hepatocytes/metabolism , Liver Regeneration/genetics , MAP Kinase Signaling System , Mice , Mice, Inbred C57BL , Mice, Knockout , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction , Thioredoxins/antagonists & inhibitors , Thioredoxins/genetics , Transforming Growth Factor alpha/pharmacology
13.
J Immunol ; 185(7): 3980-9, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20826751

ABSTRACT

Vitamin D(3) upregulated protein 1 (VDUP1) is a candidate tumor suppressor, the expression of which is dramatically reduced in various tumor tissues. In this study, we found that VDUP1 expression is suppressed during human hepatic carcinogenesis, and mice lacking VDUP1 are much more susceptible to diethylnitrosamine-induced hepatocarcinogenesis compared with wild type mice. VDUP1-deficient tumors proliferated significantly more than wild type tumors and had corresponding changes in the expression of key cell cycle regulatory proteins. In addition, the hepatomitogen-induced response was associated with a considerable increase in the release of TNF-α and subsequent enhancement of NF-κB activation in VDUP1-deficient mice. When cells were treated with TNF-α, the VDUP1 level was markedly reduced, concomitant with elevated NF-κB activation. Furthermore, the overexpression of VDUP1 resulted in the robust suppression of TNF-α-activated NF-κB activity via association with HDAC1 and HDAC3. These results indicate that VDUP1 negatively regulates hepatocarcinogenesis by suppressing TNF-α-induced NF-κB activation.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Carrier Proteins/metabolism , Liver Neoplasms/metabolism , NF-kappa B/metabolism , Thioredoxins/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Electrophoretic Mobility Shift Assay , Enzyme Activation/physiology , Humans , Immunohistochemistry , Immunoprecipitation , In Situ Nick-End Labeling , Mice , Mice, Knockout , Microscopy, Fluorescence , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/physiology
14.
Toxicol Appl Pharmacol ; 248(3): 277-84, 2010 Nov 01.
Article in English | MEDLINE | ID: mdl-20713078

ABSTRACT

Thioacetamide (TA) is a commonly used drug that can trigger acute hepatic failure (AHF) through generation of oxidative stress. Vitamin D3 upregulated protein 1 (VDUP1) is an endogenous inhibitor of thioredoxin, a ubiquitous thiol oxidoreductase, that regulates cellular redox status. In this study, we investigated the role of VDUP1 in AHF using a TA-induced liver injury model. VDUP1 knockout (KO) and wild-type (WT) mice were subjected to a single intraperitoneal TA injection, and various parameters of hepatic injury were assessed. VDUP1 KO mice displayed a significantly higher survival rate, lower serum alanine aminotransferase and aspartate aminotransferase levels, and less hepatic damage, compared to WT mice. In addition, induction of apoptosis was decreased in VDUP1 KO mice, with the alteration of caspase-3 and -9 activities, Bax-to-Bcl-2 expression ratios, and mitogen activated protein kinase (MAPK) signaling pathway. Importantly, analysis of TA bioactivation revealed lower plasma clearance of TA and covalent binding of [¹4C]TA to liver macromolecules in VDUP1 KO mice. Furthermore, the level of oxidative stress was significantly less in VDUP1 KO mice than in their WT counterparts, as evident from lipid peroxidation assay. These results collectively indicate that VDUP1 deficiency protects against TA-induced acute liver injury via lower bioactivation of TA and antioxidant effects.


Subject(s)
Carrier Proteins/physiology , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/prevention & control , Thioacetamide/toxicity , Thioredoxins/physiology , Animals , Apoptosis/drug effects , Apoptosis/genetics , Carrier Proteins/genetics , Chemical and Drug Induced Liver Injury/blood , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Random Allocation , Thioredoxins/genetics
15.
Toxicol Appl Pharmacol ; 242(3): 344-51, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-19913045

ABSTRACT

Various epidemiological studies have shown that obesity increases the risk of liver disease, but the precise mechanisms through which this occurs are poorly understood. In the present study, we hypothesized that osteopontin (OPN), an extracellular matrix and proinflammatory cytokine, has an important role in making obese mice more susceptible to inflammatory liver injury. After exposure of genetically obese ob/ob and db/db mice to a single dose of d-galactosamine (GalN), the plasma liver enzyme levels, histology and expression levels of cytokines and OPN were evaluated. The ob/ob and db/db mice, which were more sensitive to GalN-induced inflammatory liver injury compared with wild-type mice, had significantly higher plasma and hepatic OPN expression levels. Increased OPN expression was mainly found in hepatocytes and inflammatory cells and was correlated with markedly up-regulated interleukin (IL)-12 and IL-18 levels. Furthermore, pretreatment with a neutralizing OPN (nOPN) antibody attenuated the GalN-induced inflammatory liver injury in ob/ob and db/db mice, which was accompanied by significantly reduced macrophages recruitment and IL-12 and IL-18 productions. Taken together, these results suggest that up-regulated OPN expression is a contributing factor to increased susceptibility of genetically obese mice to GalN-induced liver injury by promoting inflammation and modulating immune response.


Subject(s)
Chemical and Drug Induced Liver Injury/etiology , Galactosamine/toxicity , Liver/enzymology , Obesity/complications , Osteopontin/metabolism , Animals , Chemical and Drug Induced Liver Injury/physiopathology , Cytokines/metabolism , Hepatocytes/metabolism , Inflammation/chemically induced , Inflammation/physiopathology , Interleukin-12/genetics , Interleukin-12/metabolism , Interleukin-18/genetics , Interleukin-18/metabolism , Mice , Mice, Inbred C57BL , Mice, Obese , Obesity/genetics , Osteopontin/genetics , Up-Regulation
16.
Arch Pharm Res ; 30(10): 1265-72, 2007 Oct.
Article in English | MEDLINE | ID: mdl-18038905

ABSTRACT

Silibinin is the major pharmacologically active compound of silymarin, the Silybum marianum fruit extract. Hepatoprotective activities of silibinin/silymarin are well-known, and recent studies demonstrated their anti-inflammatory and anti-carcinogenic effects which are due to inhibition of the transcription factor NF-kappaB. Based on this knowledge, we hypothesized that silibinin could be effective in the treatment of multiple sclerosis (MS) and so we tested its immunosuppressive effect in experimental autoimmune encephalomyelitis (EAE), the MS animal model. The process of spinal cord demyelination and inflammation were observed and T cell migration was determined by FACS analysis. The results showed that silibinin significantly reduced the histological signs of demyelination and inflammation in EAE. Since cytokines play an important role in inflammatory disease, the proliferative response and cytokine production were examined in lymphocytes from spleens and lymph nodes. We demonstrated that silibinin Ag-nonspecifically down-regulated the secretion of pro-inflammatory Th1 cytokines and up-regulated the anti-inflammatory Th2 cytokines in vitro. Silibinin also dose-dependently inhibited the production of Th1 cytokines ex vivo. These results indicate that silibinin is both immunosuppressive and immunomodulatory.


Subject(s)
Cytokines/metabolism , Encephalomyelitis, Autoimmune, Experimental/prevention & control , Immunosuppressive Agents/pharmacology , Spinal Cord/drug effects , T-Lymphocytes/drug effects , Animals , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Glycoproteins , Immunosuppressive Agents/therapeutic use , Lymph Nodes/drug effects , Lymph Nodes/pathology , Lymphocyte Activation/drug effects , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Myelin Proteins , Myelin-Associated Glycoprotein , Myelin-Oligodendrocyte Glycoprotein , Peptide Fragments , Recombinant Proteins , Severity of Illness Index , Silybin , Silymarin/pharmacology , Silymarin/therapeutic use , Spinal Cord/metabolism , Spinal Cord/pathology , Spleen/drug effects , Spleen/pathology , T-Lymphocytes/metabolism , Th1 Cells/drug effects , Th1 Cells/metabolism , Th2 Cells/drug effects , Th2 Cells/metabolism
17.
Free Radic Biol Med ; 40(12): 2103-11, 2006 Jun 15.
Article in English | MEDLINE | ID: mdl-16785024

ABSTRACT

B-cell-activating factor (BAFF) plays a role in mature B-cell generation and maintenance. Lipopolysaccharide (LPS) activates toll-like receptor 4 (TLR4)-dependent signal transduction and induces ROS production. Here, we investigated BAFF production regulated by reactive oxygen species (ROS). BAFF expression was augmented by LPS stimulation and by serum deprivation that induced ROS production. BAFF expression was inhibited by treatment with various antioxidants including N-acetyl-L-cysteine (NAC). We also investigated BAFF expression in vivo using peroxiredoxin II (PrxII)-deficient mouse spleen cells. PrxII is a member of the antioxidant enzyme family that protects cells from oxidative damage. Constitutive production of endogenous ROS was detected in spleen cells lacking PrxII. Serum BAFF protein level and BAFF transcript expression in splenocytes were significantly higher in PrxII(-/-) mice than wildtype mice. A higher BAFF level is consistent with the higher total number of splenocytes and B220(+)cells. Results were supported by NF-kappaB activation as judged by reduced IkappaBalpha degradation and increased nuclear translocation of p65/RelA with LPS stimulation, serum deprivation, and PrxII deletion. Data suggest that TLR4-mediated BAFF expression was increased by ROS and it was inhibited by PrxII controlling ROS production.


Subject(s)
Membrane Proteins/metabolism , NF-kappa B/agonists , Peroxidases/metabolism , Reactive Oxygen Species/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , B-Cell Activating Factor , I-kappa B Kinase/metabolism , Lipopolysaccharides/pharmacology , Membrane Proteins/blood , Membrane Proteins/genetics , Mice , Mice, Knockout , NF-kappa B/metabolism , Peroxidases/genetics , Peroxiredoxins , Protein Transport , Spleen/cytology , Spleen/drug effects , Spleen/metabolism , Toll-Like Receptor 4/metabolism , Transcription Factor RelA/metabolism , Transcription, Genetic , Tumor Necrosis Factor-alpha/genetics
18.
Anticancer Res ; 26(6B): 4575-83, 2006.
Article in English | MEDLINE | ID: mdl-17201180

ABSTRACT

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a widespread environmental contaminant that induces various types of immunotoxicity. One effect of exposure to this contaminant is alteration in cell adhesiveness. Leukocyte function-associated antigen-1 (LFA-1) plays an important role not only in T-cell recruitment into sites of inflammation and lymphoid tissues, but also in T-cell activation and in the development of specific immune responses. We, therefore, examined whether the alteration in cell adhesiveness is associated with the modulation of LFA-1 expression and its second messengers following exposure to TCDD. In vitro, 10 nM TCDD exposure suppressed splenocyte adhesion. In addition, the adhesiveness was reduced after in vivo exposure to TCDD (15 microg/kg) for six weeks with a one week interval and after additional in vitro stimulation with anti-CD3. The inhibition of adherence after TCDD exposure was related to a decreased expression of LFA-I, and expression patterns of Rap1 following TCDD exposure correlated with those of LFA-1 expression. However, TCDD did not selectively alter LFA-1 or Rapl expression in T-cell subsets. TCDD caused apparent changes in PI 3-kinase expression levels and the expression patterns of H-Ras correlated with those of PI 3-kinase expression. These data suggest that TCDD exposure down-regulates the conformation and ligand binding affinity of LFA-1 by Rapl and PI 3-kinase signaling pathways with the decreased expression of LFA-1, and consequently leads to a decrease in the LFA-1-mediated adhesion.


Subject(s)
Cell Adhesion/drug effects , Lymphocyte Function-Associated Antigen-1/physiology , Polychlorinated Dibenzodioxins/pharmacology , Spleen/drug effects , Animals , Base Sequence , Cell Adhesion/physiology , Cells, Cultured , DNA Primers , Female , Male , Mice , Mice, Inbred C3H , RNA, Messenger/genetics , Spleen/cytology , rap1 GTP-Binding Proteins/genetics
19.
Anticancer Res ; 25(4): 2831-6, 2005.
Article in English | MEDLINE | ID: mdl-16080534

ABSTRACT

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a widespread environmental contaminant, exposure to it eliciting a broad spectrum of deleterious pathophysiological effects. Since mitogen-activated protein kinase (MAPK) pathways appear to play an important role in both cell survival and the apoptotic process, we assessed the effects of TCDD on the activation of extracellular signal-regulated kinase (ERK), Jun-N-terminal kinase (JNK), p38 MAPKs and caspase-3 in RAW 264.7 cells. TCDD treatment induced a transient upshift in ERK activity, followed by a decline, but a concomitant dramatic activation of p38. However, TCDD did not cause any apparent change in the activity of JNK, though it induced an up-regulation in caspase-3 activity. These results demonstrate that the equilibrium between the ERK and p38 pathways is critical to the fate of the cells, and that the activation of p38, upstream of caspase, plays an important role in the apoptotic process. The data obtained in this study also suggests that TCDD activates the MAPK pathway via an arylhydrocarbon receptor (AhR)-independent mechanism in RAW 264.7 murine macrophages.


Subject(s)
Extracellular Signal-Regulated MAP Kinases/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Macrophages/drug effects , Macrophages/enzymology , Polychlorinated Dibenzodioxins/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Apoptosis/drug effects , Caspase 3 , Caspases/metabolism , Cell Line , Cell Survival/drug effects , DNA Fragmentation/drug effects , Environmental Pollutants/pharmacology , Enzyme Activation/drug effects , MAP Kinase Signaling System/drug effects , Macrophages/cytology , Mice
20.
Regul Pept ; 124(1-3): 151-6, 2005 Jan 15.
Article in English | MEDLINE | ID: mdl-15544853

ABSTRACT

Leukocyte function-associated antigen-1 (LFA-1) is one of the integrins that are expressed on the leukocytes, and has been shown to play an important role in leukocyte trafficking. The adhesive activity of LFA-1 is governed partially by the Rap1. This study examined that the relationship between LFA-1 and Rap1 mRNA expressions by anti-CD3 and anti-CD3+SOM treatment in the CD4+ and CD8+ T cells. The LFA-1 mRNA expression levels following the anti-CD3 and anti-CD3+SOM treatment for 30 min was greater on the CD8+ T cells, and the LFA-1 expression of the CD8+ T cells with anti-CD+SOM treatment was affected more severely than that of the CD4+ T cells. The Rap1 mRNA expression patterns following anti-CD3 and anti-CD3+SOM stimulation in the CD4+ and CD8+ T cells were similar to the LFA-1 expression patterns, and the expression level following anti-CD3+SOM treatment was suppressed more significantly in the CD8+ T cells. These results suggest that the difference in the Rap1 expression level after stimulation might explain the differences in the LFA-1 expression level on the T cell subsets, and that the down-regulation of Rap1 expression following SOM treatment is closely related to the diminished LFA-1 expression.


Subject(s)
CD4-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/drug effects , Gene Expression Regulation/drug effects , Lymphocyte Function-Associated Antigen-1/metabolism , Somatostatin/pharmacology , rap1 GTP-Binding Proteins/metabolism , Animals , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cells, Cultured , Down-Regulation/drug effects , Enzyme Activation/drug effects , Lymphocyte Function-Associated Antigen-1/genetics , Mice , Mice, Inbred C3H , RNA, Messenger/genetics , RNA, Messenger/metabolism , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/metabolism , rap1 GTP-Binding Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...