Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 11(41): 38247-38254, 2019 Oct 16.
Article in English | MEDLINE | ID: mdl-31542917

ABSTRACT

Recently, low-dimensional superlattice films have attracted significant attention because of their low dimensionality and anisotropic thermoelectric (TE) properties such as the Seebeck coefficient, electrical conductivity, and thermal conductivity. For these superlattice structures, both electrons and phonons show highly anisotropic behavior and exhibit much stronger interface scattering in the out-of-plane direction of the films compared to the in-plane direction. However, no detailed information is available in the literature for the out-of-plane TE properties of the superlattice-based films. In this report, we present the out-of-plane Seebeck coefficient, thermal conductivity, and electrical properties of p-type Bi2Te3/Bi0.5Sb1.5Te3 (bismuth telluride/bismuth antimony telluride, BT/BST) superlattice films in the temperature range of 77-500 K. Because of the synergistic combination of the energy filtering effect and low interfacial resistance of the superlattice structure, an impressively high ZT of 1.44 was achieved at 400 K for the 200 nm-thick p-type BT/BST superlattice film, corresponding to a 43% ZT enhancement compared to the pristine p-BST films with the same thickness.

2.
ACS Appl Mater Interfaces ; 11(26): 23303-23312, 2019 Jul 03.
Article in English | MEDLINE | ID: mdl-31184861

ABSTRACT

We investigate the intrinsic thermoelectric (TE) properties of the metal-diffused aluminum oxide (AO) layer in metal/AO/metal structures, where the metallic conducting filaments (CFs) were locally formed in the structures via an electrical breakdown (EBD) process as shown by resistive switching memory devices, by directly measuring cross-plane Seebeck coefficients on the CF-containing insulating AO layers. The results showed that the Seebeck coefficients of the CF-containing AO layer in metal/AO/metal structures were influenced by the generation of the metallic CFs, which is due to the diffusion of the metal into the insulating AO layers when exposed to a temperature gradient in the direction of the cross plane of the sample. In addition, the increase in the Seebeck coefficients of the CF-containing AO layer when the number of EBD-processed patterns was increased is satisfactorily explained by the low-energy carrier (i.e., minority carriers) filtering through the metal-oxide interfacial barriers in the metal/AO/metal structures.

3.
ACS Appl Mater Interfaces ; 10(51): 44472-44482, 2018 Dec 26.
Article in English | MEDLINE | ID: mdl-30507128

ABSTRACT

There is a recent interest in semiconducting superlattice films because their low dimensionality can increase the thermal power and phonon scattering at the interface in superlattice films. However, experimental studies in all cross-plane thermoelectric (TE) properties, including thermal conductivity, Seebeck coefficient, and electrical conductivity, have not been performed from these semiconducting superlattice films because of substantial difficulties in the direct measurement of the Seebeck coefficient and electrical conductivity. Unlike the conventional measurement method, we present a technique using a structure of sandwiched superlattice films between two embedded heaters as the heating source, and electrodes with two Cu plates, which directly enables the investigation of the Seebeck coefficient and electrical conductivity across the Al2O3/ZnO superlattice films, prepared by the atomic layer deposition method. Used in combination with the promising cross-plane four-point probe 3-ω method, our measurements and analysis demonstrate all cross-plane TE properties of Al2O3/ZnO superlattice films in the temperature range of 80 to 500 K. Our experimental methodology and the obtained results represent a significant advancement in the understanding of phonons and electrical transports in nanostructured materials, especially in semiconducting superlattice films in various temperature ranges.

4.
Nanoscale ; 9(44): 17224-17232, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-29068023

ABSTRACT

Nanostructured materials, such as silicon nanowires, quartz nanostructures, and polymer-modified nanostructures, are a promising new class of materials for the capture and enumeration of very rare tumor cells, including circulating tumor cells (CTCs), to examine their biological characteristics in whole blood of cancer patients. These cells can then be used for transplantation, anti-tumor cell therapy, and cell-secreted protein studies. It is believed that 3-dimensional (3D) nanostructured substrates efficiently enhance cell capture yields due to the increased local contacts between the 3D nanostructures and extracellular extensions of the tumor cells. Recent studies have been performed with enhanced cell capture yields thanks to various nanostructured platforms; however, there remains an urgent need both to capture and release viable rare tumor cells for further molecular (i.e., protein) analysis and to develop patient-specific drugs. Here, we first demonstrate that our 3D quartz nanohole array (QNHA) tumor cell capture and release system allows us not only to selectively capture rare tumor cells, but also to release the cells with high capture and release rates. This system was developed using streptavidin (STR)-functionalized QNHA (STR-QNHA) with a microfluidic channel. Our system has ideal cell-separation yields of as high as 85-91% and high release rates of >90% for the BT20 cell line. We suggest that the use of a microfluidic channel technique coupled with a STR-QNHA cell capture and release chip (STR-QNHA cell chip) would be a powerful and simple process to evaluate the capture, enumeration, and release of CTCs from patient whole blood for studying further cell therapy and tumor-cell-secreted molecules.


Subject(s)
Cell Separation , Microfluidic Analytical Techniques , Nanotechnology , Neoplastic Cells, Circulating , Quartz , Cell Line, Tumor , Humans , Immobilized Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...