Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Cell Death Differ ; 22(6): 912-20, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25633194

ABSTRACT

The positive roles of the Wnt/ß-catenin pathway in osteoblast differentiation and bone mineral density (BMD) maintenance have been clearly demonstrated in both animal experiments and clinical investigations. CXXC finger protein 5 (CXXC5), a recently identified negative regulator of the Wnt/ß-catenin pathway, showed altered cellular localization and function, which were dependent on the cell type in previous studies. However, the in vivo function of CXXC5 has not been clearly investigated yet. Here, we characterized CXXC5 as a negative regulator of osteoblast differentiation and bone formation. Deficiency of CXXC5 resulted in elevated BMD in mice without any severe gross developmental abnormalities. CXXC5 exerted a negative-feedback effect on the Wnt/ß-catenin pathway via Wnt-dependent binding to Dishevelled (Dvl) during osteoblast differentiation. Suppression of the Dvl-CXXC5 interaction using a competitor peptide resulted in the activation of the Wnt/ß-catenin pathway and osteoblast differentiation, and accelerated thickness growth of ex vivo-cultured calvariae. Overall, CXXC5 is a negative-feedback regulator induced by Wnt/ß-catenin signaling that inhibits osteoblast differentiation and bone formation via interaction with Dvl.


Subject(s)
Osteoblasts/cytology , Osteoblasts/metabolism , Receptors, CXCR5/metabolism , Wnt Signaling Pathway/physiology , beta Catenin/metabolism , Animals , Cell Differentiation/genetics , Cell Differentiation/physiology , Cell Line , Humans , Mice , Mice, Knockout , Receptors, CXCR5/genetics , Wnt Proteins/genetics , Wnt Proteins/metabolism
2.
Cell Death Dis ; 5: e1439, 2014 Oct 02.
Article in English | MEDLINE | ID: mdl-25275600

ABSTRACT

Chronic lymphocytic leukemia (CLL) can be divided into groups based on biomarkers of poor prognosis. The expression of the tyrosine kinase ZAP-70 (member of the Syk tyrosine kinase family) in CLL cells is associated with shorter overall survival in CLL patients. Currently, there is a lack of targeted therapies for patients with ZAP-70 expression in CLL cells. The tyrosine kinase inhibitor gefitinib has been shown to be effective at induce apoptosis in acute myeloid leukemia through inhibition of Syk. In this study, we sought to test the efficacy of gefitinib in primary human ZAP-70+ CLL cells. We demonstrate that gefitinib preferentially induces cell death in ZAP-70-expressing CLL cells with a median IC50 of 4.5 µM. In addition, gefitinib decreases the viability of ZAP-70+ Jurkat T leukemia cells but fails to affect T cells from CLL patients. Western blot analysis shows gefitinib reduces both basal and B-cell receptor (BCR)-stimulated phosphorylation of Syk/ZAP-70, ERK, and Akt in ZAP-70+ CLL cells. Moreover, gefitinib inhibits the pro-survival response from BCR stimulation and decreases pro-survival proteins such as Mcl-1. Finally, ZAP-70 expression sensitizes Raji cells to gefitinib treatment. These results demonstrate that gefitinib specifically targets ZAP-70+ CLL cells and inhibits the BCR cell survival pathway leading to apoptosis. This represents the likelihood of tyrosine kinase inhibitors being effective targeted treatments for ZAP-70+ CLL cells.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell/enzymology , Protein Kinase Inhibitors/pharmacology , Quinazolines/pharmacology , Receptors, Antigen, B-Cell/metabolism , Signal Transduction/drug effects , ZAP-70 Protein-Tyrosine Kinase/metabolism , Cell Survival/drug effects , Gefitinib , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Receptors, Antigen, B-Cell/genetics , Tumor Cells, Cultured , ZAP-70 Protein-Tyrosine Kinase/antagonists & inhibitors , ZAP-70 Protein-Tyrosine Kinase/genetics
3.
Plant Dis ; 98(9): 1283, 2014 Sep.
Article in English | MEDLINE | ID: mdl-30699655

ABSTRACT

Brugmansia suaveolens, also known as angel's trumpet, is a semi-woody shrub or a small tree. Because flowers of B. suaveolens are remarkably beautiful and sweetly fragrant, B. suaveolens is grown as ornamentals outdoors year-round in the tropics and subtropics, and as potted plants in temperate regions (1). In February 2013, virus-like symptoms including mosaic symptoms followed by distortion of leaves were observed in a potted B. suaveolens in a nursery in Chung-Nam Province, Korea. Symptomatic leaves were analyzed for the presence of several ornamental viruses including Cucumber mosaic virus (CMV), Tobacco mosaic virus (TMV), Tomato bush stunt virus (TBSV), and Tomato spotted wilt virus (TSWV) by immune-strip diagnostic kits that were developed by our laboratory. Positive controls and extract from healthy leaves of B. suaveolens as a negative control were included in each immune-strip assay. TSWV was detected serologically from the naturally infected B. suaveolens, but CMV, TBSV, and TMV were not detected from the B. suaveolens. The presence of TSWV (named TSWV-AT1) was confirmed by commercially available double-antibody sandwich (DAS)-ELISA kits (Agdia, Elkhart, IN). TSWV-AT1 was mechanically transmitted from the ELISA-positive B. suaveolens to Capsicum annuum and Nicotiana glutinosa, respectively. Inoculated C. annuum showed chlorotic rings in the inoculated leaves and inoculated N. glutinosa produced mosaic and systemic necrosis in the inoculated leaves after 7 days inoculation, respectively, which were consistent with symptoms caused by TSWV (2). To confirm further TSWV-AT1 infection, reverse transcription (RT)-PCR was performed using the One-Step RT-PCR (Invitrogen, Carlsbad, CA) with TSWV-specific primers, TSWV-NCP-For and TSWV-NCP-Rev (3), designed to amplify a 777-bp cDNA of the nucleocapsid protein (NCP) gene. Total RNAs from naturally infected B. suaveolens, symptomatic C. annuum, and N. glutinosa were extracted using RNeasy Plant Mini Kit (Qiagen, Valencia, CA). Total RNAs obtained from a Korean isolate of TSWV (Accession No. JF730744) and healthy B. suaveolens were used as positive and negative controls, respectively. The expected size of the RT-PCR product was amplified from symptomatic B. suaveolens, C. annuum, and N. glutinosa but not from healthy leaves of B. suaveolens. The amplified RT-PCR product from TSWV-AT1 was directly sequenced using BigDye Termination kit (Applied Biosystems, Foster City, CA). Multiple alignment of the TSWV-AT1 NCP sequence (AB910533) with NCP sequences of other TSWV isolates using MEGA5 software (4) revealed 99.0% aa identity with an Korean TSWV isolate (AEB33895) originating from tomato. These results provide additional confirmation of TSWV-AT1 infection. It is known that high-value ornamentals may act also as reservoirs for TSWV that can infect other ornamentals and cultivated crops, because TSWV has a very broad host range (2). Elaborate inspections for TSWV and other viruses are necessary for production of healthy B. suaveolens, since the popularity and economic importance of this ornamental plant is increasing. To our knowledge, this is the first report of TSWV in B. suaveolens in Korea. References: (1) Anonymous. OEPP/EPPO Bull. 34:271, 2004. (2) G. Parrella et al. J. Plant Pathol. 85:227, 2003. (3) B.-N. Chung et al. Plant Pathol. J. 28:87, 2012. (4) K. Tamura et al. Mol. Biol. Evol. 28:2731, 2011.

4.
Plant Dis ; 98(9): 1283, 2014 Sep.
Article in English | MEDLINE | ID: mdl-30699666

ABSTRACT

Catharanthus roseus, commonly known as Madagascar rosy periwinkle (also called vinca), is a tropical perennial herb of the family Apocyanaceae. Periwinkle is a bedding plant widely used in Korea because of its drought tolerance, low maintenance, and varied flower colors. In May 2013, virus-like foliar symptoms, including a mosaic with malformation of leaves, were observed on a periwinkle plant in a greenhouse located in Chonbuk Province, Korea. Cucumber mosaic virus (CMV) was identified in the symptomatic plant by serological testing for the presence of CMV coat protein (CP) with an immune-strip kit developed by our laboratory. The presence of CMV was confirmed by serological detection with a commercially available double-antibody sandwich (DAS)-ELISA kit (Agdia, Elkhart, IN). Sap from the serologically positive sample was mechanically inoculated to test plants using 10 mM phosphate buffer (pH 7.0). The virus (named CMV-Vin) caused necrotic local lesions on Chenopodium amaranticolor at 5 days-post-inoculation (dpi), while mild to severe mosaic was observed in Capsicum annuum, Cucumis sativus, Cucurbita pepo 'Cheonggobong,' Nicotiana glutinosa, N. tabacum'Samsun NN,' Physalis angulate, and Solanum lycopersicum 'Pink-Top' 10 to 14 dpi. Examination of the inoculated plant leaves by DAS-ELISA and electron microscopy (leaf dips) showed positive reactions to CMV and the presence of spherical virions ~28 nm in diameter, respectively. To verify whether CMV was the causal agent for the disease symptoms observed in naturally infected periwinkle, virus-free periwinkle (10 plants) was mechanically inoculated by sap from local lesions on C. amaranticolor inoculated with CMV-Vin. At 6 weeks after inoculation, all plants produced systemic mosaic and distortion of leaves, resulting in strong DAS-ELISA reactions for CMV, whereas mock-inoculated periwinkle plants remained symptomless and virus-free. The presence of CMV-Vin in all naturally infected and mechanically inoculated plants was further verified by reverse transcription (RT)-PCR. Total RNAs were extracted with a RNeasy Plant Mini Kit (Qiagen, Valencia, CA) and RT-PCR was carried out with the One-Step RT-PCR Kit (Invitrogen, Carlsbad, CA) using a pair of primers, CMVCPFor and CMVCPRev (1), which amplified the entire CP gene. RT-PCR products (657 bp) were obtained from all naturally infected and mechanically inoculated plants as well as from a positive control (viral RNAs from virions), but not from healthy tissues. The amplified RT-PCR products were directly sequenced using BigDye Termination kit (Applied Biosystems, Foster City, CA). Multiple alignment of the CMV-Vin CP sequence (Accession No. AB910598) with CP sequences of other CMV isolates using MEGA5 software revealed that 91.8 to 99.0% and 71.0 to 73.0% identities to those of CMV subgroup I and subgroup II, respectively. These results provide additional confirmation of CMV-Vin infection. Being perennial, periwinkle plants could serve as a reservoir for CMV to infect other ornamentals and cultivated crops (2). To our knowledge, this is the first report of CMV infection on periwinkle in Korea. References: (1) S. K. Choi et al. Virus Res. 158:271, 2011. (2) P. Palukaitis et al. Adv. Virus. Res. 41:281, 1992.

5.
Blood Cancer J ; 3: e153, 2013 Oct 18.
Article in English | MEDLINE | ID: mdl-24141622

ABSTRACT

Fludarabine, a nucleoside analogue, is commonly used in combination with other agents for the treatment of chronic lymphocytic leukaemia (CLL). In previous studies, valproic acid (VPA), an inhibitor of histone deacetylases, combined with fludarabine to synergistically increase apoptotic cell death in CLL cells. In the present study, we found that the combination of fludarabine and VPA decreases the level of the anti-apoptotic proteins Mcl-1 and XIAP in primary CLL cells. Treatment with fludarabine alone, or in combination with VPA, led to the loss of lysosome integrity, and chemical inhibition of the lysosomal protease cathepsin B, using CA074-Me, was sufficient to reduce apoptosis. VPA treatment increased cathepsin B levels and activities in primary CLL cells, thereby priming CLL cells for lysosome-mediated cell death. Six previously treated patients with relapsed CLL were treated with VPA, followed by VPA/fludarabine combination. The combined therapy resulted in reduced lymphocyte count in five out of six and reduced lymph node sizes in four out of six patients. In vivo VPA treatment increased histone-3 acetylation and cathepsin B expression levels. Thus, the synergistic apoptotic response with VPA and fludarabine in CLL is mediated by cathepsin B activation leading to a decrease in the anti-apoptotic proteins.

6.
Dis Esophagus ; 24(8): 596-600, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21595775

ABSTRACT

The aim of this study was to assess whether p53 codon 72 polymorphism is associated with an increased risk of esophageal cancer (EC) in South Korea. We conducted a case-control study including 340 patients with EC, and 1700 controls. P53 codon 72 polymorphism was determined by real-time polymerase chain reaction. The frequencies of p53 codon 72 polymorphisms (Arg/Arg, Arg/Pro, and Pro/Pro) in EC were 39.4%, 45.6%, and 15.0%, respectively; frequencies in the controls were 43.2%, 45.6%, and 11.2%, respectively. Compared with the Arg/Arg genotype, the OR of the Arg/Pro genotype was 1.09 (95% CI = 0.85-1.41) and that of the Pro/Pro genotype was 1.47 (95% CI = 1.02-2.11) for EC overall. When adjusted by age, gender, and smoking status, the OR of the Arg/Pro genotype was 1.24 (95% CI = 0.92-1.67) and that of the Pro/Pro genotype was 1.77 (95% CI = 1.15-2.74) for EC overall. In never-smokers and ever-smokers, the OR of the Arg/Pro genotype was 0.59 (95% CI = 0.37-0.95) and 1.39 (95% CI = 1.00-1.91), respectively, and there was a significant difference in the homogeneity test (P= 0.011). We observed that the p53 codon 72 polymorphism was associated with an increased risk of EC in this Korean case-control study, and smoking status modified the association between the p53 codon 72 polymorphism and the risk of EC.


Subject(s)
Esophageal Neoplasms/epidemiology , Esophageal Neoplasms/genetics , Genes, p53 , Polymorphism, Genetic , Smoking , Adult , Aged , Case-Control Studies , Female , Genotype , Humans , Male , Middle Aged , Odds Ratio , Real-Time Polymerase Chain Reaction , Republic of Korea/epidemiology , Risk Factors
7.
J Colloid Interface Sci ; 228(2): 270-278, 2000 Aug 15.
Article in English | MEDLINE | ID: mdl-10926466

ABSTRACT

A study on the variation of the permeate flux was performed in a stirred cell charged with microspheres, to investigate the effects of the stirrer speeds (300, 400, and 600 rpm) and the BSA concentration (0.1, 0.2, 0.4, and 0.8 g/L) under constant pressure. The permeate flux increased over time before the saturation point, but it began to decrease after that point. An increase of the BSA concentration and the stirrer speed resulted in the rapid increase of the permeate flux. This is contrary to the observation of the conventional filtration experiments using a stirred cell. A resistance-in-series model was employed for the modeling of the permeate flux. The cake resistance (R(c), induced by the concentration polarization of microspheres) and the fouling resistance (R(f), induced by the adsorption of BSA inside the membrane pore) must be considered simultaneously for the modeling. These modeling results were in good agreement with the experimental data. These can be applied to the special system considering both R(c) and R(f) as well as the general filtration systems using a stirred cell. Copyright 2000 Academic Press.

SELECTION OF CITATIONS
SEARCH DETAIL