Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ChemSusChem ; : e202301926, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38477449

ABSTRACT

Seawater electrolysis presents a viable route for sustainable large-scale hydrogen production, yet its practical application is hindered by several technical challenges. These include the sluggish kinetics of hydrogen evolution, poor stability, cation deposition at the cathode, electrode corrosion, and competing chloride oxidation at the anode. To overcome these obstacles, the development of innovative electrocatalysts is crucial. Transition metal phosphides (TMPs) have emerged as promising candidates owing to their superior catalytic performance and tunable structural properties. This review provides a comprehensive analysis of recent progress in the structural engineering of TMPs tailored for efficient seawater electrolysis. We delve into the catalytic mechanisms underpinning hydrogen and oxygen evolution reactions in different pH conditions, along with the detrimental side reactions that impede hydrogen production efficiency. Several methods to prepare TMPs are then introduced. Additionally, detailed discussions on structural modifications and interface engineering tactics are presented, showcasing strategies to enhance the activity and durability of TMP electrocatalysts. By analyzing current research findings, our review aims to inform ongoing research endeavors and foster advancements in seawater electrolysis for practical and ecologically sound hydrogen generation.

2.
iScience ; 24(4): 102342, 2021 Apr 23.
Article in English | MEDLINE | ID: mdl-34027316

ABSTRACT

Bismuth is the least toxic element among heavy metals, an outstanding advantage for environmental and health considerations. Yet, utilizing bismuth as anodic electrocatalyst is hindered by the formation of a spreading Bi(OH)3 inhibitor layer during the anodic process. Herein, we report that bismuth nanoparticles, produced using laser ablation, can avoid such drawbacks. The production of Bi(V) species assists polyol electrooxidation. For glucose, instead of the commonly reported gluconic acid as the product, the Bi(V) species enables highly selective oxidation and C-C bond cleavage to produce arabinonic acid, erythronic acid, and eventually glyceric acid. We not only generate high-valent Bi(V) species for catalytic applications, especially for bioelectrocatalysis where the less toxic bismuth is highly appreciated, but also present Bi nanoparticle as a highly selective electrocatalyst that can break C-C bond. We believe that Bi electrocatalyst can find broader applications in electrochemical biomass conversion and electrosynthesis.

3.
Phys Chem Chem Phys ; 9(8): 1013-20, 2007 Feb 28.
Article in English | MEDLINE | ID: mdl-17301892

ABSTRACT

Coverage defects in alkylthiol self-assembled monolayers (SAMs) are critically important to function related to electron transfer from soluble redox probes. There is therefore a need for an accurate and direct measurement of the number and type of coverage defect in a range of SAMs. Ferrocenyldodecanethiol (FcC(12)SH) has been assessed as an electrochemically-addressable label of coverage defects. It is shown that short time exposure of a SAM to FcC(12)SH leads to a quantifiable Fc coverage (Gamma(Fc)), with Gamma(Fc) < 1% readily measurable. The voltammetric signature of FcC(12)SH label is also able to differentiate types of defect in a given SAM. A number of SAM preparation conditions are assessed for the density and type of coverage defect. This labeling method therefore will be a useful tool for research into SAM property-function relationships.


Subject(s)
Ferrous Compounds/chemistry , Gold/chemistry , Organometallic Compounds/chemistry , Staining and Labeling , Sulfhydryl Compounds/chemistry , Alkanes/chemistry , Electrochemistry , Electrodes , Electron Transport , Oxidation-Reduction , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...