Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 58(12): 5210-5219, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38483184

ABSTRACT

Wildfires are a significant threat to human health, in part through degraded air quality. Prescribed burning can reduce wildfire severity but can also lead to an increase in air pollution. The complexities of fires and atmospheric processes lead to uncertainties when predicting the air quality impacts of fire and make it difficult to fully assess the costs and benefits of an expansion of prescribed fire. By modeling differences in emissions, surface conditions, and meteorology between wildfire and prescribed burns, we present a novel comparison of the air quality impacts of these fire types under specific scenarios. One wildfire and two prescribed burn scenarios were considered, with one prescribed burn scenario optimized for potential smoke exposure. We found that PM2.5 emissions were reduced by 52%, from 0.27 to 0.14 Tg, when fires burned under prescribed burn conditions, considerably reducing PM2.5 concentrations. Excess short-term mortality from PM2.5 exposure was 40 deaths for fires under wildfire conditions and 39 and 15 deaths for fires under the default and optimized prescribed burn scenarios, respectively. Our findings suggest prescribed burns, particularly when planned during conditions that minimize smoke exposure, could be a net benefit for the impacts of wildfires on air quality and health.


Subject(s)
Air Pollutants , Air Pollution , Particulate Matter , Wildfires , Humans , Air Pollutants/analysis , Air Pollution/analysis , Air Pollution/statistics & numerical data , California , Fires , Particulate Matter/analysis , Smoke/analysis , Wildfires/statistics & numerical data
2.
Ecol Appl ; 34(2): e2932, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37948058

ABSTRACT

Fire suppression and past selective logging of large trees have fundamentally changed frequent-fire-adapted forests in California. The culmination of these changes produced forests that are vulnerable to catastrophic change by wildfire, drought, and bark beetles, with climate change exacerbating this vulnerability. Management options available to address this problem include mechanical treatments (Mech), prescribed fire (Fire), or combinations of these treatments (Mech + Fire). We quantify changes in forest structure and composition, fuel accumulation, modeled fire behavior, intertree competition, and economics from a 20-year forest restoration study in the northern Sierra Nevada. All three active treatments (Fire, Mech, Mech + Fire) produced forest conditions that were much more resistant to wildfire than the untreated control. The treatments that included prescribed fire (Fire, Mech + Fire) produced the lowest surface and duff fuel loads and the lowest modeled wildfire hazards. Mech produced low fire hazards beginning 7 years after the initial treatment and Mech + Fire had lower tree growth than controls. The only treatment that produced intertree competition somewhat similar to historical California mixed-conifer forests was Mech + Fire, indicating that stands under this treatment would likely be more resilient to enhanced forest stressors. While Fire reduced modeled wildfire hazard and reintroduced a fundamental ecosystem process, it was done at a net cost to the landowner. Using Mech that included mastication and restoration thinning resulted in positive revenues and was also relatively strong as an investment in reducing modeled wildfire hazard. The Mech + Fire treatment represents a compromise between the desire to sustain financial feasibility and the desire to reintroduce fire. One key component to long-term forest conservation will be continued treatments to maintain or improve the conditions from forest restoration. Many Indigenous people speak of "active stewardship" as one of the key principles in land management and this aligns well with the need for increased restoration in western US forests. If we do not use the knowledge from 20+ years of forest research and the much longer tradition of Indigenous cultural practices and knowledge, frequent-fire forests will continue to be degraded and lost.


Subject(s)
Fires , Wildfires , Humans , Ecosystem , Forests , Trees
3.
Glob Chang Biol ; 29(17): 5087-5098, 2023 09.
Article in English | MEDLINE | ID: mdl-37332145

ABSTRACT

Phytoplankton primary production in the Arctic Ocean has been increasing over the last two decades. In 2019, a record spring bloom occurred in Fram Strait, characterized by a peak in chlorophyll that was reached weeks earlier than in other years and was larger than any previously recorded May bloom. Here, we consider the conditions that led to this event and examine drivers of spring phytoplankton blooms in Fram Strait using in situ, remote sensing, and data assimilation methods. From samples collected during the May 2019 bloom, we observe a direct relationship between sea ice meltwater in the upper water column and chlorophyll a pigment concentrations. We place the 2019 spring dynamics in context of the past 20 years, a period marked by rapid change in climatic conditions. Our findings suggest that increased advection of sea ice into the region and warmer surface temperatures led to a rise in meltwater input and stronger near-surface stratification. Over this time period, we identify large-scale spatial correlations in Fram Strait between increased chlorophyll a concentrations and increased freshwater flux from sea ice melt.


Subject(s)
Ice Cover , Phytoplankton , Chlorophyll A , Arctic Regions , Chlorophyll
4.
Mar Drugs ; 22(1)2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38276642

ABSTRACT

Marine algae extracts are an important area of potential drug discovery; however, nearly all studies to date have used non-fluorescent-based methods to determine changes in target cell activity. Many of the most robust immunological and cellular analyses rely on fluorescent probes and readouts, which can be problematic when the algae extract is fluorescent itself. In this study, we identified the fluorescent spectrum of an isolated extract from the marine dinoflagellate Karenia brevis, which included two fluorescing components: chlorophyll α and pheophytin α. When excited at 405 nm and 664 nm, the extract emitted fluorescence at 676 nm and 696 nm, respectively. The extract and its fluorescing components, chlorophyll α and pheophytin α, entered phagocytic RAW 264.7 macrophages and non-phagocytic Vero kidney cells through distinct mechanisms. When incubated with the extract and its main components, both the RAW 264.7 macrophages and the Vero cells accumulated fluorescence as early as 30 min and continued through 48 h. Vero kidney cells accumulated the K. brevis fluorescent extract through a dynamin-independent and acidified endosomal-dependent mechanism. RAW 264.7 macrophages accumulated fluorescent extract through a dynamin-independent, acidified endosomal-independent mechanism, which supports accumulation through phagocytosis. Furthermore, RAW 264.7 macrophages downregulated cell-surface expression of CD206 in response to extract stimulation indicating activation of phagocytic responses and potential immunosuppression of these immune cells. This study represents the first characterization of the cellular update of K. brevis extracts in phagocytic versus non-phagocytic cells. The data suggest the importance of understanding cellular uptake of fluorescing algae extracts and their mechanism of action for future drug discovery efforts.


Subject(s)
Dinoflagellida , Pheophytins , Animals , Chlorocebus aethiops , Mice , Vero Cells , Pheophytins/metabolism , Macrophages/metabolism , Phagocytosis , Dinoflagellida/metabolism , Dynamins/metabolism , RAW 264.7 Cells
5.
Sci Total Environ ; 836: 155723, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-35523328

ABSTRACT

Prescribed (Rx) burns are conducted on days when the meteorological thresholds of maximum air temperature, relative humidity, and wind speeds are all met (burn window) in order to ensure safe Rx burn practices. Limited burn windows have been consistently identified as one of the most important constraints for conducting Rx burns in California. We investigate whether burn windows across California can be extended from the typical fall season to include other opportune seasons for facilitating specific management objectives. We quantify the seasonal Rx burn efficiencies by assessing the frequency and burned areas using an aggregate of Rx datasets, and we compute the seasonal spatiotemporal trends in the number of days the set of meteorological parameters are met over thirty-five years (1984 to 2019), using the gridMET 4 km dataset. Our results indicate that while fall burns are most frequently executed (40% of the time), the spring (and to a lesser extent winter) seasons yield efficient Rx burns similar to fall because greater acres are being consumed with less burns. In addition, winter and spring seasons experience burn window opportunities (70-90% of the time) over larger areas than the other seasons, and this is predominantly over forested regions in Northern California. Our results also indicate that burn windows in the winter and spring are decreasing at a rate of one day per year over a larger spatial area than that of summer and fall. This decrease is primarily driven by changes in the number of days the relative humidity thresholds are met. Policymakers recognize the critical importance that Rx burns have on a multitude of ecosystem restoration factors, fire behavior dynamics, and firefighter safety. Therefore, there is a need to capitalize on these additional burn windows before these opportunities become less feasible in the future.


Subject(s)
Burns , Fires , Burns/epidemiology , California , Ecosystem , Humans , Seasons
6.
Adv Mater ; 34(7): e2106021, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34695263

ABSTRACT

Domain walls separating regions of ferroelectric material with polarization oriented in different directions are crucial for applications of ferroelectrics. Rational design of ferroelectric materials requires the development of a theory describing how compositional and environmental changes affect domain walls. To model domain wall systems, a discrete microscopic Landau-Ginzburg-Devonshire (dmLGD) approach with A- and B-site cation displacements serving as order parameters is developed. Application of dmLGD to the classic BaTiO3 , KNbO3, and PbTiO3 ferroelectrics shows that A-B cation repulsion is the key interaction that couples the polarization in neighboring unit cells of the material. dmLGD decomposition of the total energy of the system into the contributions of the individual cations and their interactions enables the prediction of different properties for a wide range of ferroelectric perovskites based on the results obtained for BaTiO3 , KNbO3, and PbTiO3 only. It is found that the information necessary to estimate the structure and energy of domain-wall "defects" can be extracted from single-domain 5-atom first-principles calculations, and that "defect-like" domain walls offer a simple model system that sheds light on the relative stabilities of the ferroelectric, antiferroelectric, and paraelectric bulk phases. The dmLGD approach provides a general theoretical framework for understanding and designing ferroelectric perovskite oxides.

7.
Ecol Appl ; 31(7): e02400, 2021 10.
Article in English | MEDLINE | ID: mdl-34214228

ABSTRACT

The overwhelming majority of information on historical forest conditions in western North America comes from public lands, which may provide an incomplete description of historical landscapes. In this study we made use of an archive containing extensive timber survey data collected in the early 1920s from privately owned forestland. These data covered over 50,000 ha and effectively represent a 19% sample of the entire area. The historical forest conditions reconstructed from these data fit the classic model of frequent-fire forests: large trees, low density, and pine-dominated. However, unlike other large-scale forest reconstructions, our study area exhibited relatively low overall variability in forest structure and composition across the historical landscape. Despite having low variability, our analyses revealed evidence of biophysical controls on tree density and pine fraction. Annual climatic variables most strongly explained the range in historical tree densities, whereas historical pine fraction was explained by a combination of topographic and climatic variables. Contemporary forest inventory data collected from both public and private lands within the same general area, albeit not a direct remeasurement, revealed substantial increases in tree density and greatly reduced pine fractions relative to historical conditions. Contemporary forests exhibited a far greater range in these conditions than what existed historically. These findings suggest that private forestland managed with multiaged silviculture may be similar to public forestland with respect to departure in forest structure and compositions from that of historical forests. However, there may be differences between management objectives that favor timber production, more typical on private lands, vs. those that favor restoration, increasingly supported on public lands.


Subject(s)
Fires , Pinus , Tracheophyta , Forests , Northwestern United States , Trees
8.
Environ Sci Technol ; 53(16): 9418-9428, 2019 Aug 20.
Article in English | MEDLINE | ID: mdl-31318536

ABSTRACT

Wildland fires in the western United States are projected to increase in frequency, duration, and size. Characterized by widespread and diverse conifer forests, burning within this region may lead to significant terpenoid emissions. Terpenoids constitute a major class of highly reactive secondary organic aerosol (SOA) precursors, with significant structure-dependent variability in reactivity and SOA-formation potential. In this study, highly speciated measurements of terpenoids emitted from laboratory and prescribed fires were achieved using two-dimensional gas chromatography. Nearly 100 terpenoids were measured in smoke samples from 71 fires, with high variability in the dominant compounds. Terpenoid emissions were dependent on plant species and tissues. Canopy/needle-derived emissions dominated in the laboratory fires, whereas woody-tissue-derived emissions dominated in the prescribed fires. Such differences likely have implications for terpenoid emissions from high vs low intensity fires and suggest that canopy-dominant laboratory fires may not accurately represent terpenoid emissions from prescribed fires or wildland fires that burn with low intensity. Predicted SOA formation was sensitive to the diversity of emitted terpenoids when compared to assuming a single terpene surrogate. Given the demonstrated linkages between fuel type, fire terpenoid emissions, and the subsequent implications for plume chemistry, speciated measurements of terpenoids in smoke derived from diverse ecosystems and fire regimes may improve air quality predictions downwind of wildland fires.


Subject(s)
Air Pollutants , Fires , Tracheophyta , Wildfires , Ecosystem , Forests , Terpenes
9.
Nature ; 560(7720): 622-627, 2018 08.
Article in English | MEDLINE | ID: mdl-30127406

ABSTRACT

Ordering of ferroelectric polarization1 and its trajectory in response to an electric field2 are essential for the operation of non-volatile memories3, transducers4 and electro-optic devices5. However, for voltage control of capacitance and frequency agility in telecommunication devices, domain walls have long been thought to be a hindrance because they lead to high dielectric loss and hysteresis in the device response to an applied electric field6. To avoid these effects, tunable dielectrics are often operated under piezoelectric resonance conditions, relying on operation well above the ferroelectric Curie temperature7, where tunability is compromised. Therefore, there is an unavoidable trade-off between the requirements of high tunability and low loss in tunable dielectric devices, which leads to severe limitations on their figure of merit. Here we show that domain structure can in fact be exploited to obtain ultralow loss and exceptional frequency selectivity without piezoelectric resonance. We use intrinsically tunable materials with properties that are defined not only by their chemical composition, but also by the proximity and accessibility of thermodynamically predicted strain-induced, ferroelectric domain-wall variants8. The resulting gigahertz microwave tunability and dielectric loss are better than those of the best film devices by one to two orders of magnitude and comparable to those of bulk single crystals. The measured quality factors exceed the theoretically predicted zero-field intrinsic limit owing to domain-wall fluctuations, rather than field-induced piezoelectric oscillations, which are usually associated with resonance. Resonant frequency tuning across the entire L, S and C microwave bands (1-8 gigahertz) is achieved in an individual device-a range about 100 times larger than that of the best intrinsically tunable material. These results point to a rich phase space of possible nanometre-scale domain structures that can be used to surmount current limitations, and demonstrate a promising strategy for obtaining ultrahigh frequency agility and low-loss microwave devices.

10.
PLoS One ; 11(2): e0150256, 2016.
Article in English | MEDLINE | ID: mdl-26918460

ABSTRACT

Forest ecosystems can act as sinks of carbon and thus mitigate anthropogenic carbon emissions. When forests are actively managed, treatments can alter forests carbon dynamics, reducing their sink strength and switching them from sinks to sources of carbon. These effects are generally characterized by fast temporal dynamics. Hence this study monitored for over a decade the impacts of management practices commonly used to reduce fire hazards on the carbon dynamics of mixed-conifer forests in the Sierra Nevada, California, USA. Soil CO2 efflux, carbon pools (i.e. soil carbon, litter, fine roots, tree biomass), and radial tree growth were compared among un-manipulated controls, prescribed fire, thinning, thinning followed by fire, and two clear-cut harvested sites. Soil CO2 efflux was reduced by both fire and harvesting (ca. 15%). Soil carbon content (upper 15 cm) was not significantly changed by harvest or fire treatments. Fine root biomass was reduced by clear-cut harvest (60-70%) but not by fire, and the litter layer was reduced 80% by clear-cut harvest and 40% by fire. Thinning effects on tree growth and biomass were concentrated in the first year after treatments, whereas fire effects persisted over the seven-year post-treatment period. Over this period, tree radial growth was increased (25%) by thinning and reduced (12%) by fire. After seven years, tree biomass returned to pre-treatment levels in both fire and thinning treatments; however, biomass and productivity decreased 30%-40% compared to controls when thinning was combined with fire. The clear-cut treatment had the strongest impact, reducing ecosystem carbon stocks and delaying the capacity for carbon uptake. We conclude that post-treatment carbon dynamics and ecosystem recovery time varied with intensity and type of treatments. Consequently, management practices can be selected to minimize ecosystem carbon losses while increasing future carbon uptake, resilience to high severity fire, and climate related stresses.


Subject(s)
Carbon Cycle , Forestry/methods , Forests , Tracheophyta/metabolism , Biomass , California , Carbon Dioxide/analysis , Carbon Dioxide/metabolism , Ecosystem , Fires/prevention & control , Forestry/trends , Soil/chemistry , Tracheophyta/growth & development
11.
Article in English | MEDLINE | ID: mdl-23007778

ABSTRACT

This paper reports on the modeling, fabrication, and experimental results of a voltage switchable barium strontium titanate solidly mounted resonator filter at 6 GHz. The filter insertion loss was measured to be -4.26 dB and the return loss to be -13.5 dB. The 3-dB bandwidth was measured to be 72 MHz and the quality factor was calculated to be 83. The data were collected at a dc bias voltage of 10 V. Temperature data were also collected, and the filter demonstrated a 0.71-dB increase in insertion loss and a 7-MHz decrease in center frequency with increase in temperature.

12.
Mycologia ; 104(5): 988-97, 2012.
Article in English | MEDLINE | ID: mdl-22492401

ABSTRACT

Interactions with soil microbiota determine the success of restoring plants to their native habitats. The goal of our study was to understand the effects of restoration practices on interactions of giant sequoia Sequoiadendron giganteum with arbuscular mycorrhizal (AM) fungi (Glomeromycota). Natural regeneration of Sequoiadendron is threatened by the absence of severe fires that create forest canopy gaps. Generating artificial canopy gaps offers an alternative tool for giant sequoia restoration. We investigated the effect of regeneration practices, including (i) sapling location within gaps, (ii) gap size and (iii) soil substrate, on AM fungal colonization of giant sequoia sapling roots in a native giant sequoia grove of the Sierra Nevada, California. We found that the extent of AM fungal root colonization was positively correlated with sapling height and light availability, which were related to the location of the sapling within the gap and the gap size. While colonization frequency by arbuscules in saplings on ash substrate was higher relative to saplings in mineral soil, the total AM fungal root colonization was similar between the substrates. A negative correlation between root colonization by Glomeromycota and non-AM fungal species indicated antagonistic interactions between different classes of root-associated fungi. Using DNA genotyping, we identified six AM fungal taxa representing genera Glomus and Ambispora present in Sequoiadendron roots. Overall, we found that AM fungal colonization of giant sequoia roots was associated with availability of plant-assimilated carbon to the fungus rather than with the AM fungal supply of mineral nutrients to the roots. We conclude that restoration practices affecting light availability and carbon assimilation alter feedbacks between sapling growth and activity of AM fungi in the roots.


Subject(s)
Glomeromycota/physiology , Mycorrhizae/growth & development , Sequoiadendron/growth & development , Sequoiadendron/microbiology , California , Carbon/metabolism , Ecosystem , Glomeromycota/genetics , Glomeromycota/growth & development , Glomeromycota/metabolism , Minerals/metabolism , Mycorrhizae/drug effects , Mycorrhizae/metabolism , Sequoiadendron/metabolism , Soil , Trees
SELECTION OF CITATIONS
SEARCH DETAIL
...