Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Acta Crystallogr C Struct Chem ; 78(Pt 11): 606-611, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36331885

ABSTRACT

Single crystals of Ir2S3 (diiridium trisulfide) and Rh2S3 (dirhodium trisulfide) were grown in evacuated silica-glass tubes using a chemical transport method and their crystal structures were determined by single-crystal X-ray diffraction analysis. These compounds have a unique sesquisulfide structure in which pairs of face-sharing octahedra are linked into a three-dimensional structure by further edge- and vertex-sharing. Ir2S3 and Rh2S3 had similar unit-cell parameters and bond distances. The atomic displacement parameter (MSD: mean-square displacement) of each atom in Ir2S3 was considerably smaller than that in Rh2S3. The Debye temperatures (ΘD) estimated from the observed MSDs for the Ir, S1 and S2 sites in Ir2S3 were 259, 576 and 546 K, respectively, and those for Rh, S1 and S2 in Rh2S3 were 337, 533 and 530 K, respectively. The bulk Debye temperature for Ir2S3 kashinite (576 K) was found to rank among the higher values reported for many known sulfides. The bulk Debye temperature for Rh2S3 bowieite (533 K) was lower than that for Ir2S3 kashinite, which crystallizes in the early sequences of mineral crystallization differentiation from the primitive magma in the Earth's mantle.

2.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 78(Pt 2): 117-132, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35411851

ABSTRACT

The structure refinement and XANES study of two gold-silver-tellurides [Au1+xAgxTe2, krennerite (x = 0.11-0.13) and sylvanite (x = 0.29-0.31)] are presented and the structures are compared with the prototype structure of calaverite (x = 0.08-0.10). Whereas the latter is well known for being incommensurately modulated at ambient conditions, neither krennerite nor sylvanite present any modulation. This is attributed to the presence of relatively strong Te-Te bonds (bond distances < 2.9 Å) in the two minerals, which are absent in calaverite (bond distances > 3.2 Å). In both tellurides, trivalent gold occurs in slightly distorted square planar coordination, whereas monovalent gold, partly substituted by monovalent silver, presents a 2+2+2 coordination, corresponding to distorted rhombic bipyramids. The differentiation between bonding and non-bonding contacts is obtained by computation of the Effective Coordination Number (ECoN). The CHARge DIstribution (CHARDI) analysis is satisfactory for both tellurides but suggests that the Te-Te bond in the [Te3]2- anion is not entirely homopolar. Both tellurides can therefore be described as Madelung-type compounds, despite the presence of Te-Te in both structures.

3.
Sci Rep ; 12(1): 3594, 2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35246544

ABSTRACT

The potential for storage of a large quantity of water/hydrogen in the lower mantle has important implications for the dynamics and evolution of the Earth. A dense hydrous magnesium silicate called phase D is a potential candidate for such a hydrogen reservoir. Its MgO-SiO2-H2O form has been believed to be stable at lower-mantle pressures but only in low-temperature regimes such as subducting slabs because of decomposition below mantle geotherm. Meanwhile, the presence of Al was reported to be a key to enhancing the thermal stability of phase D; however, the detailed Al-incorporation effect on its stability remains unclear. Here we report on Al-bearing phase D (Al-phase D) synthesized from a bridgmanite composition, with Al content expected in bridgmanite formed from a representative mantle composition, under over-saturation of water. We find that the incorporation of Al, despite smaller amounts, into phase D increases its hydrogen content and moreover extends its stability field not only to higher temperatures but also presumably to higher pressures. This leads to that Al-phase D can be one of the most potential reservoirs for a large quantity of hydrogen in the lower mantle. Further, Al-phase D formed by reaction between bridgmanite and water could play an important role in material transport in the lower mantle.

4.
Acta Crystallogr C Struct Chem ; 77(Pt 4): 169-175, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33818438

ABSTRACT

Single crystals of Ni3Se2 (trinickel diselenide) and NiSe (nickel selenide) with stoichiometric chemical compositions were grown in evacuated silica-glass tubes. The chemical compositions of the single crystals of Ni3Se2 and NiSe were determined by scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM/EDS). The crystal structures of Ni3Se2 [rhombohedral, space group R32, a = 6.02813 (13), c = 7.24883 (16) Å, Z = 3] and NiSe [hexagonal, space group P63/mmc, a = 3.66147 (10), c = 5.35766 (16) Å, Z = 2] were analyzed by single-crystal X-ray diffraction and refined to yield R values of 0.020 and 0.018 for 117 and 85 unique reflections, respectively, with Fo > 4σ(Fo). R32 is a Sohncke type of space group where enantiomeric structures can exist; the single-domain structure obtained by the refinement was confirmed to be correct by a Flack parameter of -0.05 (2). The existence of Ni-Ni bonds was confirmed in both compounds, in addition to the Ni-Se bonds. The value of the atomic displacement parameter (mean-square displacement) of each atom in NiSe was larger than that in Ni3Se2. The larger amplitude of the atoms in NiSe corresponds to longer Ni-Se and Ni-Ni bond lengths in NiSe than in Ni3Se2. The Debye temperatures, θD, estimated from observed mean-square displacements for Ni and Se in Ni3Se2, were 322 and 298 K, respectively, while those for Ni and Se in NiSe were 246 and 241 K, respectively. The existence of large cavities in the structure and the weak bonding force are likely responsible for the brittle and soft nature of the NiSe crystal.

5.
Dalton Trans ; 50(12): 4323-4334, 2021 Mar 28.
Article in English | MEDLINE | ID: mdl-33688875

ABSTRACT

Lead telluride is a well-established material for direct conversion of heat into electricity. However, the aspects of the heat transport phenomena for PbTe-alloys remain not fully understood. Here, for the first time, origins of the phonon scattering in Pb1-xSnxTe compounds were studied through changes in the effective anharmonic pair potential obtained from X-ray Absorption Fine Structure (XAFS) spectroscopy. Results indicate that the interatomic pair potential of Pb-Te and Sn-Te bonds changes with the level of substitution x and that the anharmonicity of bonds in the solid solution is increased leading to the lower values of the lattice thermal conductivity. Furthermore, due to the existence of a soft TO mode in Pb1-xSnxTe, the Grüneisen parameter γE determined using XAFS much more precisely corresponds with the changes of lattice thermal conductivity κlat compared to γS obtained from the speed of sound measurements. This study explains the observed drastic reduction in κL in Pb1-xSnxTe solid solution (2.3 W m-1 K-1 for PbTe vs. 1.0 W m-1 K-1 for Pb0.75Sn0.25Te), due to changes in the interatomic pair potential of Pb-Te and Sn-Te and provides guidelines into its effective modification related to thermal transport in alloys based on PbTe. The estimated range of low thermal conductivity for the PbTe-SnTe solid solutions (<1 W m-1 K-1) reveals opportunities for further enhancement of energy conversion for this promising family of compounds. Moreover, this work provides a new concept for the estimation of the Grüneisen parameter through the EXAFS spectra analysis.

6.
Sci Rep ; 10(1): 11645, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32669632

ABSTRACT

Microdiamonds in metamorphic rocks are a signature of ultrahigh-pressure (UHP) metamorphism that occurs mostly at continental collision zones. Most UHP minerals, except coesite and microdiamond, have been partially or completely retrogressed during exhumation; therefore, the discovery of coesite and microdiamond is crucial to identify UHP metamorphism and to understand the tectonic history of metamorphic rocks. Microdiamonds typically occur as inclusions in minerals such as garnet. Here we report the discovery of microdiamond aggregates in the matrix of a metapelite from the Nishisonogi unit, Nagasaki Metamorphic Complex, western Kyushu, Japan. The Nishisonogi unit represents a Cretaceous subduction complex which has been considered as an epidote-blueschist subfacies metamorphic unit, and the metapelite is a member of a serpentinite mélange in the Nishisonogi unit. The temperature condition for the Nishisonogi unit is 450 °C, based on the Raman micro-spectroscopy of graphite. The coexistence of microdiamond and Mg-carbonates suggests the precipitation of microdiamond from C-O-H fluid under pressures higher than 2.8 GPa. This is the first report of metamorphic microdiamond from Japan, which reveals the hidden UHP history of the Nishisonogi unit. The tectonic evolution of Kyushu in the Japanese Archipelago should be reconsidered based on this finding.

7.
RSC Adv ; 10(22): 13232-13236, 2020 Mar 30.
Article in English | MEDLINE | ID: mdl-35492108

ABSTRACT

We have synthesized solid-solution nanoparticles (Pd : Ru = 1 : 3, 1 : 1 and 3 : 1) in an immiscible Pd-Ru system by the pulsed plasma in liquid method using Pd-Ru mixture bulk electrodes. The particle sizes of the floated and sedimented samples were measured to be <10 and <20 nm, respectively, via high-resolution transmission electron microscopy (HR-TEM). The lattice parameters of nanoparticles followed the Vegard's law, and the energy-dispersive X-ray spectroscopy (EDX) results almost coincided with those obtained for the starting bulk mixtures. The solid-solution structures and local structure were confirmed via HR-TEM, X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure spectroscopy (XAFS).

8.
Colloids Surf B Biointerfaces ; 180: 466-472, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31100673

ABSTRACT

Immiscible bimetallic Ag-Cu system has been synthesized by the pulsed plasma in liquid method with a graph of one pulse duration. Herein, by combining X-ray power diffraction, K-edge X-ray absorption near edge structure and high-resolution transmission electron microscopy, our results indicate that homogeneously alloyed Ag-Cu nanoparticles (Ag-Cu NAs) have the average diameter about 2.1 nm, composed by 48.5 at% Ag and 51.5 at% Cu with chemical analysis and the estimated lattice parameter was 3.873 Å. The antibacterial property of Ag-Cu NAs was detected against E. coli and S. aureus strains according to the colony formed abilities of bacteria on agar plates covered with the nanoparticles. With very short incubation period, Ag-Cu NAs completely inhibited the E. coli and S. aureus growth at an ultralow concentration. The mechanism of antibacterial property of Ag-Cu NAs was performed by the inductively coupled plasma-atomic emission spectrometry and the plane wave pseudopotential method implemented in the CASTEP package based on the density functional theory. The Ag+ dissolution is correlated with antibacterial activity for Ag-Cu NAs-assisted antibacterial treatment. These findings obtained revealed that our Ag-Cu NAs could be served as a containing material of numerous bacteria-free products in order to avoid their bacterial contamination.


Subject(s)
Alloys/pharmacology , Anti-Bacterial Agents/pharmacology , Copper/pharmacology , Metal Nanoparticles/chemistry , Silver/pharmacology , Drug Liberation , Electrodes , Escherichia coli/drug effects , Escherichia coli/growth & development , Metal Nanoparticles/ultrastructure , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , X-Ray Diffraction
9.
Sci Rep ; 9(1): 6275, 2019 04 18.
Article in English | MEDLINE | ID: mdl-31000745

ABSTRACT

Study of arsenic (As) provides guidelines for the development of next-generation materials. We clarify the unique structure of the third crystalline polymorph of natural As (Pnm21-As) by crystallographical experiment and the electronic structure by first-principles computational method. The crystal structure of Pnm21-As is a novel structure in which the basic portions of semi-metalic grey-As and semi-conductor black-As are alternately arranged at the atomic level. For both covalent and van der Waals bonding, the contributions of sd and pd hybridizations are important. Van der Waals bonding characteristics and d orbital contributions can be varied by control of layer stacking. Total charges are clearly divided into positive and negative in the same elements for the grey-As and black-As portions, respectively, is of importance. The sequence in which one-dimensional electron donor and acceptor portions alternate in the layer will be the first description.

10.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 75(Pt 2): 273-278, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-32830752

ABSTRACT

Petzite, Ag3AuTe2, crystallizes in the space group I4132, which is a Sohncke type of space group where chiral crystal structures can occur. The structure refinement of petzite reported long ago [Frueh (1959). Am. Mineral. 44, 693-701] did not provide any information about the absolute structure. A new single-crystal X-ray diffraction refinement has now been performed on a sample from Lake View Mine, Golden Mile, Kalgoorlie, Australia, which has resulted in a reliable absolute structure [a Flack parameter of 0.05 (3)], although this corresponds to the opposite enantiomorph reported previously. The minimum Te-Te distance is 3.767 (3) Å, slightly shorter than the van der Waals bonding distance, which suggests a weak interaction between the two chalcogens. XANES spectra near the Au and Te LIII edges suggest that the chemical-bonding character of Au in petzite is more metallic than in other gold minerals.

11.
Nanomaterials (Basel) ; 8(12)2018 Dec 18.
Article in English | MEDLINE | ID: mdl-30567370

ABSTRACT

We synthesized Pd-Fe series nanoparticles in solid solution using pulsed plasma in liquid with Pd-Fe bulk mixture electrodes. The Pd-Fe atomic percent ratios were 1:3, 1:1, and 3:1, and the particle size was measured to be less than 10 nm by high-resolution transmission electron microscopy (HR-TEM). The nanoparticles showed face-centered cubic structure. The lattice parameter increased with increasing Pd content and followed Vegard's law, and energy-dispersive X-ray spectra were consistent with the ratios of the starting samples, which showed a solid solution state. The solid solution structure and local structure were confirmed by HR-TEM and X-ray absorption fine structure.

12.
J Synchrotron Radiat ; 25(Pt 6): 1694-1702, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30407179

ABSTRACT

A synchrotron X-ray diffraction study of a single crystal of titanomagnetite shows that the cation distribution of Fe2+, Fe3+ and Ti4+ is of the inverse-spinel type. The valence-difference contrast (VDC) method of resonant scattering was applied at a wavelength of λ = 1.7441 Š(E = 7.1085 keV) within the pre-edge of the Fe K absorption spectrum, utilizing the large difference in the real part of anomalous scattering factors, between -7.45 and -6.50, for Fe2+ and Fe3+, respectively. The most plausible atomic arrangement in Ti0.31Fe2.69O4 obtained from our analysis is [Fe3+1.00]A[Fe3+0.38Fe2+1.31Ti4+0.31]BO4, where A and B in an AB2O4-type structure correspond to the tetrahedral and octahedral sites, respectively. This result suggests that titanomagnetite has the complete inverse-spinel structure continuously from the end-member of magnetite, even in the case of relatively high Ti content. The physical properties may be described by the Néel model, which claims that Fe3+ preferentially occupies the tetrahedral site, within a Ti-poor half-region of the solid solution. Based on the ordering scheme the magnetic structure of titanomagnetite is considered to be analogous to that of magnetite. The combination of circularly polarized X-rays and a horizontal-type four-circle diffractometer used in this VDC technique has the advantage of increasing the experimental accuracy and freedom with the simultaneous reduction of experimental noise.

13.
J Synchrotron Radiat ; 25(Pt 4): 1129-1134, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29979174

ABSTRACT

Pre-edge peaks in 3d transition-metal element (Sc, Ti, V, Cr and Mn) K-edge XANES (X-ray absorption near-edge structure) spectra in AO2 (A = Ti and V), A2O3 (A = Sc, Cr and Mn) and AO (A = Mn) are measured at various temperatures. Quantitative comparisons for the XANES spectra were investigated by using absorption intensity invariant point normalization. The energy position of the difference peak (D peak) is obtained from the difference between the low- and high-temperature XANES spectra. There are two kinds of temperature dependence for pre-edge peak intensity: rutile- and anatase-type. The true temperature dependence of a transition to each orbital is obtained from the difference spectrum. In both anatase and rutile, the pre-edge peak positions of A2 and A3 are clearly different from the D1- and D2-peak positions. The A1 peak-top energies in both phases of VO2 differ from the D1 peak-top energies. The D-peak energy position determined by the difference spectrum should represent one of the true energies for the transition to an independent orbital. The peak-top positions for pre-edge peaks in XANES do not always represent the true energy for independent transitions to orbitals because several orbital transitions overlap with similar energies. This work suggests that deformation vibration (bending mode) is effective in determining the temperature dependence for the D-peak intensity.

14.
Acta Crystallogr C Struct Chem ; 74(Pt 4): 460-464, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29620030

ABSTRACT

Single crystals of the vanadate garnet Ca2NaCd2V3O12 (dicalcium sodium dicadmium trivanadate) were synthesized using the floating-zone method and the crystal structure was investigated using single-crystal X-ray diffraction. We considered the effectiveness of substitution of the Y-site cation with reference to previous structural studies of vanadate garnets. The structures of vanadate garnets are subject to geometric constraints similar to those of silicate garnets. These constraints force the tetrahedral-dodecahedral shared edge length in vanadate garnets to become shorter than the unshared dodecahedral edge length, as in ugrandite (uvarovite, grossular and andradite) garnets. However, the vanadate garnet Ca2NaCd2V3O12 exhibits the normal structural feature, similar to pyralspite (pyrope, almandine and spessartine) garnets, namely that the dodecahedral-dodecahedral shared edge length is shorter than the unshared dodecahedral edge length. With increasing ionic radius of the Y-site cation, the atomic coordinates x, y and z of oxygen adopt values which satisfy Pauling's third rule.

15.
Acta Crystallogr C Struct Chem ; 72(Pt 10): 716-719, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27703116

ABSTRACT

The Sr-Ge-O system has an earth-scientific importance as a potentially good low-pressure analog of the Ca-Si-O system, one of the major components in the constituent minerals of the Earth's crust and mantle. However, it is one of the germanate systems that has not yet been fully examined in the phase relations and structural properties. The recent findings that the SrGeO3 high-pressure perovskite phase is the first Ge-based transparent electronic conductor make the Sr-Ge-O system interesting in the field of materials science. In the present study, we have revealed the existence of a new high-pressure strontium germanate, SrGe2O5. Single crystals of this compound crystallized as a co-existent phase with SrGeO3 perovskite single crystals in the sample recovered in the compression experiment of SrGeO3 pseudowollastonite conducted at 6 GPa and 1223 K. The crystal structure consists of germanium-oxygen framework layers stacked along [001], with Sr atoms located at the 12-coordinated cuboctahedral site; the layers are formed by the corner linkages between GeO6 octahedra and between GeO6 octahedra and GeO4 tetrahedra. The present SrGe2O5 is thus isostructural with the high-pressure phases of SrSi2O5 and BaGe2O5. Comparison of these three compounds leads to the conclusion that the structural responses of the GeO6 and GeO4 polyhedra to cation substitution at the Sr site are much less than that of the SrO12 cuboctahedron to cation substitution at the Ge sites. Such a difference in the structural response is closely related to the bonding nature.

16.
Article in English | MEDLINE | ID: mdl-27240769

ABSTRACT

A high-temperature single-crystal X-ray diffraction study of a synthetic PbTiO3 perovskite was carried out over the wide temperature range 298-928 K. A transition from a tetragonal (P4mm) to a cubic (Pm \bar 3 m) phase has been revealed near 753 K. In the non-centrosymmetric P4mm symmetry group, the difference in relative displacement between Pb and O along the c-axis is much larger than that between Ti and O. The Pb and Ti cations contribute sufficiently to polarization being shifted in the opposite direction compared with the shift of O atoms. Deviation from the linear changes in Debye-Waller factors and bonding distances in the tetragonal phases can be interpreted as a precursor phenomenon before the phase transition. Disturbance of the temperature factor Ueq for O is observed in the vicinity of the transition point, while Ueq values for Pb and Ti are continuously changing with increasing temperature. The O site includes the clear configurational disorder in the cubic phase. The polar local positional distortions remain in the cubic phase and are regarded as the cause of the paraelectricity. Estimated values of the Debye temperature ΘD for Pb and Ti are 154 and 467 K in the tetragonal phase and decrease 22% in the high-temperature phase. Effective potentials for Pb and Ti change significantly and become soft after the phase transition.

17.
Article in English | MEDLINE | ID: mdl-26830807

ABSTRACT

A variable-temperature single-crystal X-ray diffraction study of a synthetic BaTiO3 perovskite has been performed over the temperature range 298-778 K. A transition from a tetragonal (P4mm) to a cubic (Pm3m) phase has been revealed near 413 K. In the non-centrosymmetric P4mm symmetry group, both Ti and O atoms are displaced along the c-axis in opposite directions with regard to the Ba position fixed at the origin, so that Ti(4+) and Ba(2+) cations occupy off-center positions in the TiO6 and BaO12 polyhedra, respectively. Smooth temperature-dependent changes of the atomic coordinates become discontinuous with the phase transition. Our observations imply that the cations remain off-center even in the high-temperature cubic phase. The temperature dependence of the mean-square displacements of Ti in the cubic phase includes a significant static component which means that Ti atoms are statistically distributed in the off-center positions.


Subject(s)
Barium/chemistry , Calcium Compounds/chemistry , Oxides/chemistry , Titanium/chemistry , X-Ray Diffraction , Cations/chemistry , Crystallography, X-Ray , Molecular Structure
18.
Acta Crystallogr E Crystallogr Commun ; 71(Pt 9): 1109-13, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26396860

ABSTRACT

Single crystals of the title compound, the post-perovskite-type CaIrO3 [calcium iridium(IV) trioxide], have been grown from a CaCl2 flux at atmospheric pressure. The crystal structure consists of an alternate stacking of IrO6 octa-hedral layers and CaO8 hendeca-hedral layers along [010]. Chains formed by edge-sharing of IrO6 octa-hedra (point-group symmetry 2/m..) run along [100] and are inter-connected along [001] by sharing apical O atoms to build up the IrO6 octa-hedral layers. Chains formed by face-sharing of CaO8 hendeca-hedra (point-group symmetry m2m) run along [100] and are inter-connected along [001] by edge-sharing to build up the CaO8 hendeca-hedral layers. The IrO6 octa-hedral layers and CaO8 hendeca-hedral layers are inter-connected by sharing edges. The present structure refinement using a high-power X-ray source confirms the atomic positions determined by Hirai et al. (2009 ▸) [Z. Kristallogr. 224, 345-350], who had revised our previous report [Sugahara et al. (2008 ▸). Am. Mineral. 93, 1148-1152]. However, the displacement ellipsoids of the Ir and Ca atoms based on the present refinement can be approximated as uniaxial ellipsoids elongating along [100], unlike those reported by Hirai et al. (2009 ▸). This suggests that the thermal vibrations of the Ir and Ca atoms are mutually suppressed towards the Ir⋯Ca direction across the shared edge because of the dominant repulsion between the two atoms.

19.
Acta Crystallogr E Crystallogr Commun ; 71(Pt 5): 502-4, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25995866

ABSTRACT

Single crystals of the SrGeO3 (strontium germanium trioxide) high-pressure phase have been synthesized successfully at 6 GPa and 1223 K. The compound crystallizes with the ideal cubic perovskite-type structure (space group Pm-3m), which consists of a network of corner-linked regular GeO6 octa-hedra (point-group symmetry m-3m), with the larger Sr atoms located at the centers of cavities in the form of SrO12 cubocta-hedra (point-group symmetry m-3m) in the network. The degrees of covalencies included in the Sr-O and the Ge-O bonds calculated from bond valences are 20.4 and 48.9%, respectively. Thus, the Ge-O bond of the GeO6 octa-hedron in the SrGeO3 perovskite has a strong covalency, comparable to those of the Si-O bonds of the SiO4 tetra-hedra in silicates with about 50% covalency. The thermal vibrations of the O atoms in the title compound are remarkably suppressed in the directions of the Ge-O bonds. This anisotropy ranks among the largest observed in stoichiometric cubic perovskites.

20.
Nat Commun ; 5: 3453, 2014 Mar 27.
Article in English | MEDLINE | ID: mdl-24670790

ABSTRACT

Recent studies show that the D'' layer, just above the Earth's core-mantle boundary, is composed of MgSiO3 post-perovskite and has significant lateral inhomogeneity. Here we consider the D'' diversity as related to the single-crystal elasticity of the post-perovskite phase. We measure the single-crystal elasticity of the perovskite Pbnm-CaIrO3 and post-perovskite Cmcm-CaIrO3 using inelastic X-ray scattering. These materials are structural analogues to same phases of MgSiO3. Our results show that Cmcm-CaIrO3 is much more elastically anisotropic than Pbnm-CaIrO3, which offers an explanation for the enigmatic seismic wave velocity jump at the D'' discontinuity. Considering the relation between lattice preferred orientation and seismic anisotropy in the D'' layer, we suggest that the c axis of post-perovskite MgSiO3 aligns vertically beneath the Circum-Pacific rim, and the b axis vertically beneath the Central Pacific.


Subject(s)
Calcium Compounds/chemistry , Iridium/chemistry , Magnesium Silicates/chemistry , Oxides/chemistry , Anisotropy , Convection , Crystallization , Earth, Planet , Elasticity , Geological Phenomena , Models, Theoretical , Scattering, Small Angle , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...