Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Protein Sci ; 30(2): 328-338, 2021 02.
Article in English | MEDLINE | ID: mdl-33103311

ABSTRACT

Tetrathionate hydrolase (4THase) plays an important role in dissimilatory sulfur oxidation in the acidophilic iron- and sulfur-oxidizing bacterium Acidithiobacillus ferrooxidans. The structure of recombinant 4THase from A. ferrooxidans (Af-Tth) was determined by X-ray crystallography to a resolution of 1.95 Å. Af-Tth is a homodimer, and its monomer structure exhibits an eight-bladed ß-propeller motif. Two insertion loops participate in dimerization, and one loop forms a cavity with the ß-propeller region. We observed unexplained electron densities in this cavity of the substrate-soaked structure. The anomalous difference map generated using diffraction data collected at a wavelength of 1.9 Å indicated the presence of polymerized sulfur atoms. Asp325, a highly conserved residue among 4THases, was located near the polymerized sulfur atoms. 4THase activity was completely abolished in the site-specific Af-Tth D325N variant, suggesting that Asp325 plays a crucial role in the first step of tetrathionate hydrolysis. Considering that the Af-Tth reaction occurs only under acidic pH, Asp325 acts as an acid for the tetrathionate hydrolysis reaction. The polymerized sulfur atoms in the active site cavity may represent the intermediate product in the subsequent step.


Subject(s)
Acidithiobacillus/enzymology , Bacterial Proteins/chemistry , Hydrolases/chemistry , Models, Chemical , Protein Multimerization , Tetrathionic Acid/chemistry , Bacterial Proteins/metabolism , Crystallography, X-Ray , Hydrolases/metabolism , Hydrolysis , Protein Structure, Quaternary , Protein Structure, Secondary , Tetrathionic Acid/metabolism
2.
Article in English | MEDLINE | ID: mdl-23722856

ABSTRACT

Tetrathionate hydrolase (4THase) from the iron- and sulfur-oxidizing bacterium Acidithiobacillus ferrooxidans catalyses the disproportionate hydrolysis of tetrathionate to elemental sulfur, thiosulfate and sulfate. The gene encoding 4THase (Af-tth) was expressed as inclusion bodies in recombinant Escherichia coli. Recombinant Af-Tth was activated by refolding under acidic conditions and was then purified to homogeneity. The recombinant protein was crystallized in 20 mM glycine buffer pH 10 containing 50 mM sodium chloride and 33%(v/v) PEG 1000 using the hanging-drop vapour-diffusion method. The crystal was a hexagonal cylinder with dimensions of 0.2 × 0.05 × 0.05 mm. X-ray crystallographic analysis showed that the crystal diffracted to 2.15 Å resolution and belongs to space group P3(1) or P3(2), with unit-cell parameters a = b = 92.1, c = 232.6 Å.


Subject(s)
Acidithiobacillus/enzymology , Bacterial Proteins/chemistry , Hydrolases/chemistry , Bacterial Proteins/analysis , Crystallization , Hydrolases/analysis , Recombinant Proteins/analysis , Recombinant Proteins/chemistry , X-Ray Diffraction
3.
FEMS Microbiol Lett ; 309(1): 43-7, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20546308

ABSTRACT

Tetrathionate hydrolase (4THase) plays an important role in dissimilatory sulfur metabolism in the acidophilic chemolithoautotrophic iron- and sulfur-oxidizing bacterium Acidithiobacillus ferrooxidans. We have already identified the gene encoding 4THase (Af-tth) in this bacterium. The heterologous expression of Af-tth in Escherichia coli resulted in the formation of inclusion bodies of the protein in an inactive form. The recombinant protein (Af-Tth) was successfully activated after an in vitro refolding treatment. The specific activity of the refolded Af-Tth obtained was 21.0+/-9.4 U mg(-1) when the protein solubilized from inclusion bodies by 6 M guanidine hydrochloride solution was refolded in a buffer containing 10 mM beta-alanine, 2 mM dithiothreitol, 0.4 M ammonium sulfate, and 30% v/v glycerol with the pH adjusted to 4.0 by sulfuric acid for 14 h at 4 degrees C. The in vitro refolding experiments revealed that Af-Tth required exposure to an acidic environment during protein folding for activation. This property reflects a physiological characteristic of the Af-Tth localized in the outer membrane of the acidophilic A. ferrooxidans. No cofactor such as pyrroloquinoline quinone (PQQ) was required during the refolding process in spite of the similarity in the primary structure of Af-Tth to the PQQ family of proteins.


Subject(s)
Acidithiobacillus/enzymology , Bacterial Proteins/chemistry , Hydrolases/chemistry , Acidithiobacillus/chemistry , Acidithiobacillus/genetics , Acids/chemistry , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Hydrolases/genetics , Hydrolases/metabolism , Protein Folding , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...