Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 378(6625): eaba1624, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36520915

ABSTRACT

Chimeric antigen receptor (CAR) T cells are ineffective against solid tumors with immunosuppressive microenvironments. To overcome suppression, we engineered circuits in which tumor-specific synNotch receptors locally induce production of the cytokine IL-2. These circuits potently enhance CAR T cell infiltration and clearance of immune-excluded tumors, without systemic toxicity. The most effective IL-2 induction circuit acts in an autocrine and T cell receptor (TCR)- or CAR-independent manner, bypassing suppression mechanisms including consumption of IL-2 or inhibition of TCR signaling. These engineered cells establish a foothold in the target tumors, with synthetic Notch-induced IL-2 production enabling initiation of CAR-mediated T cell expansion and cell killing. Thus, it is possible to reconstitute synthetic T cell circuits that activate the outputs ultimately required for an antitumor response, but in a manner that evades key points of tumor suppression.


Subject(s)
Immunosuppression Therapy , Immunotherapy, Adoptive , Interleukin-2 , Neoplasms , Receptors, Chimeric Antigen , T-Lymphocytes , Humans , Immunotherapy, Adoptive/methods , Interleukin-2/genetics , Interleukin-2/metabolism , Neoplasms/immunology , Neoplasms/therapy , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes/immunology , T-Lymphocytes/transplantation , Tumor Microenvironment , Animals , Mice , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Cell Engineering , Receptors, Notch/metabolism , Immunosuppression Therapy/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...