Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 3: 2750, 2013 Oct 02.
Article in English | MEDLINE | ID: mdl-24084937

ABSTRACT

URu2Si2 is a uranium compound that exhibits a so-called 'hidden-order' transition at ~17.5 K. However, the order parameter of this second-order transition as well as many of its microscopic properties remain unclarified despite considerable research. One of the key questions in this regard concerns the type of spontaneous symmetry breaking occurring at the transition; although rotational symmetry breaking has been detected, it is not clear whether another type of symmetry breaking also occurs. Another key question concerns the property of Fermi-surface gapping in the momentum space. Here we address these key questions by a momentum-dependent observation of electronic states at the transition employing ultrahigh-resolution three-dimensional angle-resolved photoemission spectroscopy. Our results provide compelling evidence of the spontaneous breaking of the lattice's translational symmetry and particle-hole asymmetric gapping of a heavy quasiparticle pocket at the transition.

2.
Sci Technol Adv Mater ; 13(5): 054403, 2012 Oct.
Article in English | MEDLINE | ID: mdl-27877521

ABSTRACT

We have characterized the electronic structure of FeSe1-x Te x for various x values using soft x-ray photoemission spectroscopy (SXPES), high-resolution photoemission spectroscopy (HRPES) and inverse photoemission spectroscopy (IPES). The SXPES valence band spectral shape shows that the 2 eV feature in FeSe, which was ascribed to the lower Hubbard band in previous theoretical studies, becomes less prominent with increasing x. HRPES exhibits systematic x dependence of the structure near the Fermi level (EF): its splitting near EF and filling of the pseudogap in FeSe. IPES shows two features, near EF and approximately 6 eV above EF; the former may be related to the Fe 3d states hybridized with chalcogenide p states, while the latter may consist of plane-wave-like and Se d components. In the incident electron energy dependence of IPES, the density of states near EF for FeSe and FeTe has the Fano lineshape characteristic of resonant behavior. These compounds exhibit different resonance profiles, which may reflect the differences in their electronic structures. By combining the PES and IPES data the on-site Coulomb energy was estimated at 3.5 eV for FeSe.

3.
Opt Lett ; 30(5): 555-7, 2005 Mar 01.
Article in English | MEDLINE | ID: mdl-15789734

ABSTRACT

Single-scattering spectroscopy by use of a low-coherence interferometer is introduced to measure the power spectra of light scattered from extremely dense colloidal suspensions. The power spectrum of a heterodyne component can be obtained by subtraction of the power spectrum of a homodyne component from the measured power spectrum. The heterodyne power spectrum for light scattered from the medium is shown to coincide with the single-scattering spectrum to a depth of up to a few times the mean-free path length. Therefore single-scattering spectroscopy is newly proposed as a means by which to analyze the characteristics of extremely dense colloidal suspensions.

SELECTION OF CITATIONS
SEARCH DETAIL
...