Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
Endocrinology ; 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39001875

ABSTRACT

The functional maturation of the pituitary gland requires adequate cell differentiation and vascular network formation. Although spatiotemporal signaling and transcription factors are known to govern pituitary development, the involvement of primary cilia, non-moving hair-like organelles, remains unclear. In this study, we uncovered the contribution of primary cilia to cell-type determination and vascular network formation during pituitary development. Homozygous knockout mice lacking a ciliary kinase, Dyrk2-/-, exhibit abnormalities in ciliary structure and pituitary hypoplasia, accompanied by varying degrees of failure in differentiation among all types of hormone-producing cells in the anterior lobe. Aberrations in cell differentiation in Dyrk2-/- mice arise from a decrease in the expression of crucial transcription factors, Lhx4, Lhx3, and Prop1, resulting from the inactivity of Hedgehog (Hh) signaling during the early stages of development. Furthermore, the loss of Dyrk2 results in vascular system abnormalities during the middle to late stages of development. Mechanistically, transcriptome analyses revealed the down-regulation of vitronectin-integrin αvß3-VEGFR2 signaling, essential for orchestrating vascular development. Collectively, our findings demonstrate that primary cilia play a pivotal role as critical regulators of cell survival, cell determination, and angiogenesis during pituitary gland development through the activation of Hh signaling. These findings expand our understanding of the potential link between pituitary dysfunction in human disorders and ciliopathies.

2.
Proc Natl Acad Sci U S A ; 121(28): e2320070121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38968120

ABSTRACT

Hedgehog (Hh) signaling, an evolutionarily conserved pathway, plays an essential role in development and tumorigenesis, making it a promising drug target. Multiple negative regulators are known to govern Hh signaling; however, how activated Smoothened (SMO) participates in the activation of downstream GLI2 and GLI3 remains unclear. Herein, we identified the ciliary kinase DYRK2 as a positive regulator of the GLI2 and GLI3 transcription factors for Hh signaling. Transcriptome and interactome analyses demonstrated that DYRK2 phosphorylates GLI2 and GLI3 on evolutionarily conserved serine residues at the ciliary base, in response to activation of the Hh pathway. This phosphorylation induces the dissociation of GLI2/GLI3 from suppressor, SUFU, and their translocation into the nucleus. Loss of Dyrk2 in mice causes skeletal malformation, but neural tube development remains normal. Notably, DYRK2-mediated phosphorylation orchestrates limb development by controlling cell proliferation. Taken together, the ciliary kinase DYRK2 governs the activation of Hh signaling through the regulation of two processes: phosphorylation of GLI2 and GLI3 downstream of SMO and cilia formation. Thus, our findings of a unique regulatory mechanism of Hh signaling expand understanding of the control of Hh-associated diseases.


Subject(s)
Dyrk Kinases , Hedgehog Proteins , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , Signal Transduction , Zinc Finger Protein Gli2 , Zinc Finger Protein Gli3 , Animals , Zinc Finger Protein Gli3/metabolism , Zinc Finger Protein Gli3/genetics , Zinc Finger Protein Gli2/metabolism , Zinc Finger Protein Gli2/genetics , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Mice , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , Humans , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Cell Proliferation , Cilia/metabolism , Smoothened Receptor/metabolism , Smoothened Receptor/genetics , Nuclear Proteins , Repressor Proteins
3.
Histol Histopathol ; : 18744, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38656683

ABSTRACT

To maintain microenvironmental and cellular homeostasis, cells respond to multiple stresses by activating characteristic cellular mechanisms consisting of receptors, signal transducers, and effectors. Dysfunction of these mechanisms can trigger multiple human diseases as well as cancers. Dual-specificity tyrosine-regulated kinases (DYRKs) are members of the CMGC group and are evolutionarily conserved from yeast to mammals. Previous studies revealed that DYRK2 has important roles in the regulation of the cell cycle and survival in cancer cells. On the other hand, recent studies show that DYRK2 also exhibits significant functions in multiple cellular stress responses and in maintaining cellular homeostasis. Hence, the further elucidation of mechanisms underlying DYRK2's diverse responses to various stresses helps to promote the advancement of innovative clinical therapies and pharmacological drugs. This review summarizes the molecular mechanisms of DYRK2, particularly focusing on cellular stress responses.

4.
Biochim Biophys Acta Gen Subj ; 1868(6): 130600, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38508285

ABSTRACT

OBJECTIVES: Lung cancer is a leading cause of cancer-related mortality and remains one of the most poorly prognosed disease worldwide. Therefore, it is necessary to identify novel molecular markers with potential therapeutic effects. Recent findings have suggested that dual-specificity tyrosine-regulated kinase 2 (DYRK2) plays a tumor suppressive role in colorectal, breast, and hepatic cancers; however, its effect and mechanism in lung cancer remain poorly understood. Therefore, this study aimed to investigate the tumor-suppressive role and molecular mechanism of DYRK2 in lung adenocarcinoma (LUAD) by in vitro experiments and xenograft models. MATERIALS AND METHODS: The evaluation of DYRK2 expression was carried out using lung cancer cell lines and normal bronchial epithelial cells. Overexpression of DYRK2 was induced by an adenovirus vector, and cell proliferation was assessed through MTS assay and Colony Formation Assay. Cell cycle analysis was performed using flow cytometry. Additionally, proliferative capacity was evaluated in a xenograft model by subcutaneously implanting A549 cells into SCID mice (C·B17/Icr-scidjcl-scid/scid). RESULTS: Immunoblotting assays showed that DYRK2 was downregulated in most LUAD cell lines. DYRK2 overexpression using adenovirus vectors significantly suppressed cell proliferation compared with that in the control group. Additionally, DYRK2 overexpression suppressed tumor growth in a murine subcutaneous xenograft model. Mechanistically, DYRK2 overexpression inhibited the proliferation of LUAD cells via p21-mediated G1 arrest, which was contingent on p53. CONCLUSION: Taken together, these findings suggest that DYRK2 may serve as potential prognostic biomarker and therapeutic target for LUAD.


Subject(s)
Adenocarcinoma of Lung , Cell Proliferation , Dyrk Kinases , G1 Phase Cell Cycle Checkpoints , Lung Neoplasms , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , Animals , Humans , Mice , A549 Cells , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/genetics , Cell Line, Tumor , G1 Phase Cell Cycle Checkpoints/genetics , Gene Expression Regulation, Neoplastic , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Mice, SCID , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , Xenograft Model Antitumor Assays
5.
J Reprod Dev ; 69(6): 308-316, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-37778977

ABSTRACT

The adenohypophysis is comprised of the anterior and intermediate lobes (AL and IL, respectively). Cluster of differentiation 9 (CD9)- and sex-determining region Y-box 2 (SOX2)-positive cells are stem/progenitor hormone-producing cells in the AL. They are located in the marginal cell layer (MCL) facing Rathke's cleft between the AL and IL (primary niche) and the parenchyma of the AL (secondary niche). We previously showed that, in rats, CD9/SOX2-positive cells in the IL side of the MCL (IL-side MCL) migrate to the AL side (AL-side MCL) and differentiate into prolactin-producing cells (PRL cells) in the AL parenchyma during pregnancy, lactation, and diethylstilbestrol treatment, all of which increase PRL cell turnover. This study examined the changes in CD9/SOX2-positive stem/progenitor cell niches and their proportions by manipulating the turnover of growth hormone (GH)- and thyroid-stimulating hormone (TSH)-producing cells (GH and TSH cells, respectively), which are Pit1 lineage cells, as well as PRL cells. After induction, the isolated CD9/SOX2-positive cells from the IL-side MCL formed spheres and differentiated into GH and TSH cells. We also observed an increased GH cell proportion upon treatment with GH-releasing hormone and recovery from continuous stress and an increased TSH cell proportion upon propylthiouracil treatment, concomitant with alterations in the proportion of CD9/SOX2-positive cells in the primary and secondary niches. These findings suggest that CD9/SOX2-positive cells have the potential to supply GH and TSH when an increase in GH and TSH cell populations is required in the adult pituitary gland.


Subject(s)
Pituitary Gland, Anterior , Animals , Female , Rats , Growth Hormone , Pituitary Gland/metabolism , Pituitary Gland, Anterior/metabolism , Prolactin , Thyrotropin , Tetraspanin 29/metabolism , SOXB1 Transcription Factors/metabolism
6.
Cell Tissue Res ; 394(3): 487-496, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37650920

ABSTRACT

The pituitary gland is a major endocrine tissue composing of two distinct entities, the adenohypophysis (anterior pituitary, cranial placode origin) and the neurohypophysis (posterior pituitary, neural ectoderm origin), and plays important roles in maintaining vital homeostasis. This tissue is maintained by a slow, consistent cell-renewal system of adult stem/progenitor cells. Recent accumulating evidence shows that neural crest-, head mesenchyme-, and endoderm lineage cells invade during pituitary development and contribute to the maintenance of the adult pituitary gland. Based on these novel observations, this article discusses whether these lineage cells are involved in pituitary organogenesis, maintenance, regeneration, dysplasia, or tumors.


Subject(s)
Pituitary Gland, Anterior , Pituitary Gland, Posterior , Pituitary Gland , Ectoderm , Neural Crest
7.
Genes Dis ; 10(3): 758-770, 2023 May.
Article in English | MEDLINE | ID: mdl-37396550

ABSTRACT

The dual-specificity tyrosine-regulated kinase (DYRK) family is evolutionarily conserved from invertebrate to mammals. DYRKs regulate cell proliferation, apoptosis, survival, and differentiation by modifying the protein activation state, cellular localization, and turnover. In contrast to several studies in cellular models, the available evidence regarding the in vivo roles of DYRKs in mammalian development is limited. This review summarizes the in vivo studies on Dyrks which provide insight into their roles in mammalian tissue development and congenital diseases. In vivo evidence obtained using knockout and genetically modified animals helps to understand and develop novel clinical therapies and drug for human congenital diseases, such as Down syndrome and neuronal disorders (associated with DYRK1A) and skeletal ciliopathies (associated with DYRK2).

8.
Molecules ; 28(10)2023 May 11.
Article in English | MEDLINE | ID: mdl-37241771

ABSTRACT

Extended-synaptotagmin 1 (E-Syt1) is an endoplasmic reticulum membrane protein that is involved in cellular lipid transport. Our previous study identified E-Syt1 as a key factor for the unconventional protein secretion of cytoplasmic proteins in liver cancer, such as protein kinase C delta (PKCδ); however, it is unclear whether E-Syt1 is involved in tumorigenesis. Here, we showed that E-Syt1 contributes to the tumorigenic potential of liver cancer cells. E-Syt1 depletion significantly suppressed the proliferation of liver cancer cell lines. Database analysis revealed that E-Syt1 expression is a prognostic factor for hepatocellular carcinoma (HCC). Immunoblot analysis and cell-based extracellular HiBiT assays showed that E-Syt1 was required for the unconventional secretion of PKCδ in liver cancer cells. Furthermore, deficiency of E-Syt1 suppressed the activation of insulin-like growth factor 1 receptor (IGF1R) and extracellular-signal-related kinase 1/2 (Erk1/2), both of which are signaling pathways mediated by extracellular PKCδ. Three-dimensional sphere formation and xenograft model analysis revealed that E-Syt1 knockout significantly decreased tumorigenesis in liver cancer cells. These results provide evidence that E-Syt1 is critical for oncogenesis and is a therapeutic target for liver cancer.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Synaptotagmin I/metabolism , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Cell Line , Carcinogenesis
9.
Cancer Sci ; 114(6): 2471-2484, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36851883

ABSTRACT

Protein kinase C delta (PKCδ) is a multifunctional serine-threonine kinase implicated in cell proliferation, differentiation, tumorigenesis, and therapeutic resistance. However, the molecular mechanism of PKCδ in colorectal cancer (CRC) remains unclear. In this study, we showed that PKCδ acts as a negative regulator of cellular senescence in p53 wild-type (wt-p53) CRC. Immunohistochemical analysis revealed that PKCδ levels in human CRC tissues were higher than those in the surrounding normal tissues. Deletion studies have shown that cell proliferation and tumorigenesis in wt-p53 CRC is sensitive to PKCδ expression. We found that PKCδ activates p21 via a p53-independent pathway and that PKCδ-kinase activity is essential for p21 activity. In addition, both repression of PKCδ expression and inhibition of PKCδ activity induced cellular senescence-like phenotypes, including increased senescence-associated ß-galactosidase (SA-ß-gal) staining, low LaminB1 expression, large nucleus size, and senescence-associated secretory phenotype (SASP) detection. Finally, a kinase inhibitor of PKCδ suppressed senescence-dependent tumorigenicity in a dose-dependent manner. These results offer a mechanistic insight into CRC survival and tumorigenesis. In addition, a novel therapeutic strategy for wt-p53 CRC is proposed.


Subject(s)
Colorectal Neoplasms , Protein Kinase C-delta , Humans , Protein Kinase C-delta/genetics , Protein Kinase C-delta/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cellular Senescence/genetics , Colorectal Neoplasms/pathology , Carcinogenesis
10.
Proc Natl Acad Sci U S A ; 119(36): e2202730119, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36044553

ABSTRACT

Protein secretion in cancer cells defines tumor survival and progression by orchestrating the microenvironment. Studies suggest the occurrence of active secretion of cytosolic proteins in liver cancer and their involvement in tumorigenesis. Here, we investigated the identification of extended-synaptotagmin 1 (E-Syt1), an endoplasmic reticulum (ER)-bound protein, as a key mediator for cytosolic protein secretion at the ER-plasma membrane (PM) contact sites. Cytosolic proteins interacted with E-Syt1 on the ER, and then localized spatially inside SEC22B+ vesicles of liver cancer cells. Consequently, SEC22B on the vesicle tethered to the PM via Q-SNAREs (SNAP23, SNX3, and SNX4) for their secretion. Furthermore, inhibiting the interaction of protein kinase Cδ (PKCδ), a liver cancer-specific secretory cytosolic protein, with E-Syt1 by a PKCδ antibody, decreased in both PKCδ secretion and tumorigenicity. Results reveal the role of ER-PM contact sites in cytosolic protein secretion and provide a basis for ER-targeting therapy for liver cancer.


Subject(s)
Liver Neoplasms , R-SNARE Proteins , Synaptotagmin I , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Protein Transport , R-SNARE Proteins/metabolism , Synaptotagmin I/metabolism , Tumor Microenvironment
11.
J Reprod Dev ; 68(4): 278-286, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35691820

ABSTRACT

Sex-determining region Y-box 2 (SOX2)-positive cells are stem/progenitor cells in the adenohypophysis, comprising the anterior and intermediate lobes (AL and IL, respectively). The cells are located in the marginal cell layer (MCL) facing Rathke's cleft (primary niche) and the parenchyma of the AL (secondary niche). We previously demonstrated in vitro that the tetraspanin superfamily CD9 and SOX2 double-positive (CD9/SOX2-positive) cells in the IL-side MCL migrate to the AL side and differentiate into hormone-producing and endothelial cells in the AL parenchyma. Here, we performed in vivo studies to evaluate the role of IL-side CD9/SOX2-positive cells in pregnancy, lactation, and treatment with diethylstilbestrol (DES; an estrogen analog) when an increased population of prolactin (PRL) cells was observed in the AL of the rat pituitary. The proportions of CD9/SOX2-, CD9/Ki67-, and PRL/TUNEL-positive cells decreased in the primary and secondary niches during pregnancy and DES treatment. In contrast, the number of CD9/PRL-positive cells increased in the AL-side MCL and AL parenchyma during pregnancy and during DES treatment. The proportion of PRL/Ki67-positive cells increased in the AL-side MCL and AL parenchyma in response to DES treatment. Next, we isolated CD9-positive cells from the IL-side MCL using an anti-CD9 antibody. During cell culture, the cells formed free-floating three-dimensional clusters (pituispheres). Furthermore, CD9-positive cells in the pituisphere differentiated into PRL cells, and their differentiation potential was promoted by DES. These findings suggest that CD9/SOX2-positive cells in the IL-side MCL may act as adult stem cells in the AL parenchyma that supply PRL cells under the influence of estrogen.


Subject(s)
Pituitary Gland, Anterior , Prolactin , Animals , Cell Differentiation/physiology , Endothelial Cells , Female , Ki-67 Antigen , Pituitary Gland , Pregnancy , Rats , Rats, Wistar , SOXB1 Transcription Factors/immunology , Stem Cells , Tetraspanin 29/immunology
12.
J Cell Sci ; 135(11)2022 06 01.
Article in English | MEDLINE | ID: mdl-35582972

ABSTRACT

Neural precursor cell-expressed developmentally down-regulated 8 (NEDD8), an ubiquitin-like protein, is an essential regulator of the DNA damage response. Numerous studies have shown that neddylation (conjugation of NEDD8 to target proteins) dysfunction causes several human diseases, such as cancer. Hence clarifying the regulatory mechanism of neddylation could provide insight into the mechanism of genome stability underlying the DNA damage response (DDR) and carcinogenesis. Here, we demonstrate that dual-specificity tyrosine-regulated kinase 2 (DYRK2) is a novel regulator of neddylation and maintains genome stability. Deletion of DYRK2 leads to persistent DNA double-strand breaks (DSBs) and subsequent genome instability. Mechanistically, DYRK2 promotes neddylation through forming a complex with NAE1, which is a component of NEDD8-activating enzyme E1, and maintaining its protein level by suppressing polyubiquitylation. The present study is the first to demonstrate that DYRK2 controls neddylation and is necessary for maintaining genome stability. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Cullin Proteins , DNA Damage , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , Cullin Proteins/metabolism , DNA Damage/genetics , Genomic Instability/genetics , Humans , NEDD8 Protein/genetics , NEDD8 Protein/metabolism , Ubiquitins/genetics , Ubiquitins/metabolism , Dyrk Kinases
13.
Cancer Sci ; 113(7): 2378-2385, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35490382

ABSTRACT

Protein kinase C delta (PKCδ) is a multifunctional PKC family member and has been implicated in many types of cancers, including liver cancer. Recently, we have reported that PKCδ is secreted from liver cancer cells, and involved in cell proliferation and tumor growth. However, it remains unclear whether the extracellular PKCδ directly regulates cell surface growth factor receptors. Here, we identify epidermal growth factor receptor (EGFR) as a novel interacting protein of the cell surface PKCδ in liver cancer cells. Imaging studies showed that secreted PKCδ interacted with EGFR-expressing cells in both autocrine and paracrine manners. Biochemical analysis revealed that PKCδ bound to the extracellular domain of EGFR. We further found that a part of the amino acid sequence on the C-terminal region of PKCδ was similar to the putative EGFR binding site of EGF. In this regard, the point mutant of PKCδ in the binding site lacked the ability to bind to the extracellular domain of EGFR. Upon an extracellular PKCδ-EGFR association, ERK1/2 activation, downstream of EGFR signaling, was apparently induced in liver cancer cells. This study indicates that extracellular PKCδ behaves as a growth factor and provides a molecular basis for extracellular PKCδ-targeting therapy for liver cancer.


Subject(s)
ErbB Receptors , Liver Neoplasms , Protein Kinase C-delta , Cell Line , Cell Proliferation , Epidermal Growth Factor/metabolism , ErbB Receptors/genetics , ErbB Receptors/metabolism , Humans , Liver Neoplasms/genetics , Protein Kinase C-delta/genetics , Protein Kinase C-delta/metabolism
14.
J Reprod Dev ; 68(3): 225-231, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35418523

ABSTRACT

Pituitary endocrine cells are supplied by Sox2-expressing stem/progenitor cells in the anterior lobe of the adult pituitary gland. These SOX2-positive cells are maintained in two types of microenvironments (niches): the marginal cell layer (MCL)-niche and the parenchymal-niche. Recently, we isolated dense SOX2-positive cell clusters from the parenchymal-niche by taking advantage of their resistance to protease treatment as parenchymal stem/progenitor cell (PS)-clusters. In the present study, by analyzing these isolated PS-clusters, we attempted to identify novel structural characteristics of pituitary stem/progenitor cell niches. Quantitative real-time PCR showed that tight junction-related genes were distinctly expressed in the isolated PS-clusters. Immunocytostaining showed that the tight junction molecules, ZO-1 and occludin, were localized in the apical membrane facing the pseudo-follicle-like structure of the isolated PS-clusters regardless of the expression of S100ß, which distinguishes the sub-population of SOX2-positive cells. Furthermore, immunohistochemistry of the pituitary glands of adult rats clearly demonstrated that ZO-1 and occludin were densely present in the parenchymal-niche encircling the pseudo-follicle, while they were observed in the apical membrane in the MCL-niche facing the residual lumen. Collectively, these tight junction-related proteins might be involved in the architecture and maintenance of the plasticity of pituitary stem/progenitor cell niches.


Subject(s)
Tight Junction Proteins , Tight Junctions , Animals , Occludin/genetics , Occludin/metabolism , Pituitary Gland/metabolism , Rats , Stem Cell Niche , Stem Cells , Tight Junction Proteins/genetics , Tight Junction Proteins/metabolism , Tight Junctions/metabolism
15.
Cell Tissue Res ; 388(3): 583-594, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35316373

ABSTRACT

The adenohypophysis consists of the anterior and intermediate lobes (AL and IL). The marginal cell layer (MCL), including the ventral region of the IL and the dorsal region of the AL lining the Rathke's cleft, acts as the primary stem/progenitor cell niches in adult adenohypophysis. The cells of the MCL on the IL side consisted of cluster of differentiation 9 (CD9)-positive stem/progenitor cells with or without motile cilia. However, any additional cellular properties of multiciliated CD9-positive cells are not known. The present study aimed to identify the character of the multiciliated cells in stem cell niche of the pituitary gland. We observed the fine structure of the multiciliated cells in the MCL of male Wistar rats at an early stage after birth and in adulthood (P60) using scanning electron microscopy. Since the previous study showed that the MCL cells of adult rats synthesize retinoic acid (RA), the present study determined whether the multiciliated cells are involved in RA regulation by the expression of retinal aldehyde dehydrogenase 1 (RALDH1) and CYP26A1, an enzyme synthesizing and degrading RA, respectively. Results showed that 96% of multiciliated cells in adult male rats expressed CYP26A1, while 60% expressed RALDH1. Furthermore, the isolated CD9-positive cells from the IL side MCL responded to RA and activated the degradation system of RA by increasing Cyp26a1 expression. These findings indicated that multiciliated cells are involved in RA metabolism in the MCL. Our observations provide novel insights regarding the stem cell niche of the adult pituitary.


Subject(s)
Pituitary Gland, Anterior , Tretinoin , Animals , Male , Pituitary Gland/metabolism , Pituitary Gland, Anterior/metabolism , Rats , Rats, Wistar , Retinoic Acid 4-Hydroxylase/metabolism , Tretinoin/metabolism , Tretinoin/pharmacology
16.
Cancer Sci ; 113(3): 960-970, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34932844

ABSTRACT

Colorectal cancer is one of the most common gastrointestinal tumors with good outcomes; however, with distant metastasis, the outcomes are poor. Novel treatment methods are urgently needed. Our in vitro studies indicate that dual-specificity tyrosine-regulated kinase 2 (DYRK2) functions as a tumor suppressor in colorectal cancer by regulating cell survival, proliferation, and apoptosis induction. In addition, DYRK2 expression is decreased in tumor tissues compared to nontumor tissues in colorectal cancer, indicating a correlation with clinical prognosis. In this context, we devised a novel therapeutic strategy to overexpress DYRK2 in tumors by adenovirus-mediated gene transfer. The present study shows that overexpression of DYRK2 in colon cancer cell lines by adenovirus inhibits cell proliferation and induces apoptosis in vitro. Furthermore, in mouse subcutaneous xenograft and liver metastasis models, enforced expression of DYRK2 by direct or intravenous injection of adenovirus to the tumor significantly inhibits tumor growth. Taken together, these findings show that adenovirus-based overexpression of DYRK2 could be a novel gene therapy for liver metastasis of colorectal cancer.


Subject(s)
Adenoviridae/genetics , Colorectal Neoplasms/therapy , Genetic Therapy/methods , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , Animals , Apoptosis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Genetic Vectors , Humans , Liver Neoplasms/genetics , Liver Neoplasms/secondary , Liver Neoplasms/therapy , Mice , Tumor Suppressor Proteins/genetics , Xenograft Model Antitumor Assays , Dyrk Kinases
17.
Commun Biol ; 4(1): 1204, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34671097

ABSTRACT

Congenital malformations cause life-threatening diseases in pediatrics, yet the molecular mechanism of organogenesis is poorly understood. Here we show that Dyrk2-deficient mice display congenital malformations in multiple organs. Transcriptome analysis reveals molecular pathology of Dyrk2-deficient mice, particularly with respect to Foxf1 reduction. Mutant pups exhibit sudden death soon after birth due to respiratory failure. Detailed analyses of primordial lungs at the early developmental stage demonstrate that Dyrk2 deficiency leads to altered airway branching and insufficient alveolar development. Furthermore, the Foxf1 expression gradient in mutant lung mesenchyme is disrupted, reducing Foxf1 target genes, which are necessary for proper airway and alveolar development. In ex vivo lung culture system, we rescue the expression of Foxf1 and its target genes in Dyrk2-deficient lung by restoring Shh signaling activity. Taken together, we demonstrate that Dyrk2 is essential for embryogenesis and its disruption results in congenital malformation.


Subject(s)
Forkhead Transcription Factors/genetics , Gene Expression Regulation, Developmental , Gene Expression , Lung Diseases/genetics , Protein Serine-Threonine Kinases/deficiency , Protein-Tyrosine Kinases/deficiency , Animals , Forkhead Transcription Factors/metabolism , Lung Diseases/congenital , Mice , Dyrk Kinases
18.
Cell Tissue Res ; 386(2): 227-237, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34550453

ABSTRACT

In the anterior pituitary, S100ß protein (S100ß) has been assumed to be a marker of folliculo-stellate cells, which are one of the non-hormone-producing cells existing in the parenchyma of the adult anterior lobe and are composed of subpopulations with various functions. However, recent accumulating studies on S100ß-positive cells, including non-folliculo-stellate cells lining the marginal cell layer (MCL), have shown the novel aspect that most S100ß-positive cells in the MCL and parenchyma of the adult anterior lobe are positive for sex determining region Y-box 2 (SOX2), a marker of pituitary stem/progenitor cells. From the viewpoint of SOX2-positive cells, the majority of these cells in the MCL and in the parenchyma are positive for S100ß, suggesting that S100ß plays a role in the large population of stem/progenitor cells in the anterior lobe of the adult pituitary. Reportedly, S100ß/SOX2-double positive cells are able to differentiate into hormone-producing cells and various types of non-hormone-producing cells. Intriguingly, it has been demonstrated that extra-pituitary lineage cells invade the pituitary gland during prenatal pituitary organogenesis. Among them, two S100ß-positive populations have been identified: one is SOX2-positive population which invades at the late embryonic period through the pituitary stalk and another is a SOX2-negative population that invades at the middle embryonic period through Atwell's recess. These two populations are likely the substantive origin of S100ß-positive cells in the postnatal anterior pituitary, while S100ß-positive cells emerging from oral ectoderm-derived cells remain unclear.


Subject(s)
Pituitary Gland/cytology , Pituitary Gland/metabolism , S100 Calcium Binding Protein beta Subunit/metabolism , Stem Cells/cytology , Animals , Cell Differentiation , Humans , Pituitary Gland/growth & development , Pituitary Gland, Anterior/cytology , Pituitary Gland, Anterior/growth & development , Pituitary Gland, Anterior/metabolism , S100 Calcium Binding Protein beta Subunit/analysis , SOXB1 Transcription Factors/analysis , SOXB1 Transcription Factors/metabolism , Stem Cells/metabolism
19.
Cell Tissue Res ; 385(3): 713-726, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33961126

ABSTRACT

A supply of hormone-producing cells from stem/progenitor cells is critical to sustain the endocrine activity of the pituitary gland. In the adenohypophysis composing the anterior and intermediate lobe (AL and IL, respectively), stem/progenitor cells expressing sex-determining region Y-box 2 (SOX2) and S100ß are located in the marginal cell layer (MCL) facing Rathke's cleft (primary niche) and the parenchyma of the AL (secondary niche). Our previous studies using mice and rats indicated that the tetraspanin superfamily CD9 and CD81 are expressed in S100ß/SOX2-positive cells of primary and secondary niches (named CD9/CD81/S100ß/SOX2-positive cell), and the cells located in the AL-side niches exhibit plasticity and multipotency. However, it is unclear whether CD9/CD81/S100ß/SOX2-positive cells in the IL-side primary niche are stem/progenitor cells for the AL or IL. Here, we successfully isolated pure CD9/CD81/S100ß/SOX2-positive cells from the IL-side primary niche. They had a higher level of S100ß and SOX2 mRNA and a greater pituisphere forming capacity than those of CD9/CD81/S100ß/SOX2-positive cells isolated from the AL. They also had capacity to differentiate into all types of adenohypophyseal hormone-producing cells, concomitantly with the loss of CD9 expression. Loss of CD9 and CD81 function in CD9/CD81/S100ß/SOX2-positive cells by siRNA treatment impaired prolactin cell differentiation. Consistently, in the pituitary gland of CD9/CD81 double knockout mice, dysgenesis of the MCL and a lower population of prolactin cells were observed. These results suggest that the CD9/CD81/S100ß/SOX2-positive cells in the MCL of the IL-side are potential suppliers of adult core stem cells in the AL.


Subject(s)
Pituitary Gland/anatomy & histology , Prolactin/metabolism , Tetraspanin 29/metabolism , Animals , Male , Mice , Rats , Rats, Wistar
20.
Cancer Res ; 81(2): 414-425, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33318039

ABSTRACT

Expression of human protein kinase C delta (PKCδ) protein has been linked to many types of cancers. PKCδ is known to be a multifunctional PKC family member and has been rigorously studied as an intracellular signaling molecule. Here we show that PKCδ is a secretory protein that regulates cell growth of liver cancer. Full-length PKCδ was secreted to the extracellular space in living liver cancer cells under normal cell culture conditions and in xenograft mouse models. Patients with liver cancer showed higher levels of serum PKCδ than patients with chronic hepatitis or liver cirrhosis or healthy individuals. In liver cancer cells, PKCδ secretion was executed in an endoplasmic reticulum (ER)-Golgi-independent manner, and the inactivation status of cytosolic PKCδ was required for its secretion. Furthermore, colocalization studies showed that extracellular PKCδ was anchored on the cell surface of liver cancer cells via association with glypican 3, a liver cancer-related heparan sulfate proteoglycan. Addition of exogenous PKCδ activated IGF-1 receptor (IGF1R) activation and subsequently enhanced activation of ERK1/2, which led to accelerated cell growth in liver cancer cells. Conversely, treatment with anti-PKCδ antibody attenuated activation of both IGF1R and ERK1/2 and reduced cell proliferation and spheroid formation of liver cancer cells and tumor growth in xenograft mouse models. This study demonstrates the presence of PKCδ at the extracellular space and the function of PKCδ as a growth factor and provides a rationale for the extracellular PKCδ-targeting therapy of liver cancer. SIGNIFICANCE: PKCδ secretion from liver cancer cells behaves as a humoral growth factor that contributes to cell growth via activation of proliferative signaling molecules, which may be potential diagnostic or therapeutic targets.


Subject(s)
Biomarkers, Tumor/metabolism , Culture Media, Conditioned/metabolism , Gene Expression Regulation, Neoplastic , Liver Neoplasms/pathology , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Protein Kinase C-delta/metabolism , Animals , Apoptosis , Biomarkers, Tumor/genetics , Case-Control Studies , Cell Movement , Cell Proliferation , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Male , Mice , Mice, Nude , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 3/genetics , Phosphorylation , Prognosis , Signal Transduction , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...