Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Microbiol ; 134(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38040658

ABSTRACT

AIM: Aeribacillus pallidus PI8 is a Gram-positive thermophilic bacterium that produces thermostable antimicrobial substances against several bacterial species, including Geobacillus kaustophilus HTA426. In the present study, we sought to identify genes of PI8 with antibacterial activity. METHODS AND RESULTS: We isolated, cloned, and characterized a thermostable bacteriocin from A. pallidus PI8 and named it pallidocyclin. Mass spectrometric analyses of pallidocyclin revealed that it had a circular peptide structure, and its precursor was encoded by pcynA in the PI8 genome. pcynA is the second gene within the pcynBACDEF operon. Expression of the full-length pcynBACDEF operon in Bacillus subtilis produced intact pallidocyclin, whereas expression of pcynF in G. kaustophilus HTA426 conferred resistance to pallidocyclin. CONCLUSION: Aeribacillus pallidus PI8 possesses the pcynBACDEF operon to produce pallidocyclin. pcynA encodes the pallidocyclin precursor, and pcynF acts as an antagonist of pallidocyclin.


Subject(s)
Bacillaceae , Bacteriocins , Bacteriocins/genetics , Bacteriocins/pharmacology , Bacillaceae/genetics , Anti-Bacterial Agents/pharmacology
2.
J Gen Appl Microbiol ; 68(2): 87-94, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35418540

ABSTRACT

Bacteriocins are a large family of peptides synthesized ribosomally by a variety of bacterial species. The genome of one of the thermophilic Gram-positive bacteria, Aeribacillus pallidus PI8, was found to possess an operon comprising five genes possibly involved in the production of a putative bacteriocin that was named pcnABCDE for the production of "pallidocyclicin." This study investigated the function of the pcn operon experimentally. The heterologous expression of the entire pcn operon from the plasmid was toxic to Escherichia coli but not to Bacillus subtilis. However, when the entire pcn operon was expressed constitutively, even the growth of B. subtilis was impaired, and at least pcnA was implied to serve as the precursor of pallidocyclicin. In addition, a strain of B. subtilis expressing the entire pcn operon from the plasmid showed toxicity to another thermophilic species, Geobacillus kaustophilus, at elevated temperatures, whereas another strain lacking pcnE alone from the pcn operon lost the toxicity, suggesting that pcnE might be involved in the biosynthesis of pallidocyclicin when it is produced in B. subtilis.


Subject(s)
Bacteriocins , Amino Acid Sequence , Bacillaceae , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacteriocins/chemistry , Bacteriocins/genetics , Escherichia coli/genetics , Multigene Family , Operon
SELECTION OF CITATIONS
SEARCH DETAIL
...