Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
1.
Front Immunol ; 15: 1372584, 2024.
Article in English | MEDLINE | ID: mdl-38745665

ABSTRACT

Among Plasmodium spp. responsible for human malaria, Plasmodium vivax ranks as the second most prevalent and has the widest geographical range; however, vaccine development has lagged behind that of Plasmodium falciparum, the deadliest Plasmodium species. Recently, we developed a multistage vaccine for P. falciparum based on a heterologous prime-boost immunization regimen utilizing the attenuated vaccinia virus strain LC16m8Δ (m8Δ)-prime and adeno-associated virus type 1 (AAV1)-boost, and demonstrated 100% protection and more than 95% transmission-blocking (TB) activity in the mouse model. In this study, we report the feasibility and versatility of this vaccine platform as a P. vivax multistage vaccine, which can provide 100% sterile protection against sporozoite challenge and >95% TB efficacy in the mouse model. Our vaccine comprises m8Δ and AAV1 viral vectors, both harboring the gene encoding two P. vivax circumsporozoite (PvCSP) protein alleles (VK210; PvCSP-Sal and VK247; -PNG) and P25 (Pvs25) expressed as a Pvs25-PvCSP fusion protein. For protective efficacy, the heterologous m8Δ-prime/AAV1-boost immunization regimen showed 100% (short-term; Day 28) and 60% (long-term; Day 242) protection against PvCSP VK210 transgenic Plasmodium berghei sporozoites. For TB efficacy, mouse sera immunized with the vaccine formulation showed >75% TB activity and >95% transmission reduction activity by a direct membrane feeding assay using P. vivax isolates in blood from an infected patient from the Brazilian Amazon region. These findings provide proof-of-concept that the m8Δ/AAV1 vaccine platform is sufficiently versatile for P. vivax vaccine development. Future studies are needed to evaluate the safety, immunogenicity, vaccine efficacy, and synergistic effects on protection and transmission blockade in a non-human primate model for Phase I trials.


Subject(s)
Dependovirus , Genetic Vectors , Malaria Vaccines , Malaria, Vivax , Plasmodium vivax , Animals , Malaria Vaccines/immunology , Malaria Vaccines/administration & dosage , Plasmodium vivax/immunology , Plasmodium vivax/genetics , Malaria, Vivax/prevention & control , Malaria, Vivax/transmission , Malaria, Vivax/immunology , Mice , Dependovirus/genetics , Dependovirus/immunology , Female , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Antibodies, Protozoan/immunology , Antibodies, Protozoan/blood , Disease Models, Animal , Vaccinia virus/genetics , Vaccinia virus/immunology , Humans , Mice, Inbred BALB C , Immunization, Secondary , Vaccine Efficacy
2.
Antibodies (Basel) ; 12(3)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37753974

ABSTRACT

BACKGROUND: To fight the COVID-19 pandemic, immunity against SARS-CoV-2 should be achieved not only through natural infection but also by vaccination. The effect of COVID-19 vaccination on previously infected persons is debatable. METHODS: A prospective cohort was undergone to collect sera from unvaccinated survivors and vaccinated persons-with and without COVID-19 pre-infection. The sera were analyzed for the anti-receptor binding domain (RBD) titers by ELISA and for the capacity to neutralize the pseudovirus of the Wuhan-Hu-1 strain by luciferase assays. RESULTS: Neither the antibody titers nor the neutralization capacity was significantly different between the three groups. However, the correlation between the antibody titers and the percentage of viral neutralization derived from sera of unvaccinated survivors was higher than that from vaccinated persons with pre-infection and vaccinated naïve individuals (Spearman correlation coefficient (r) = -0.8558; 95% CI, -0.9259 to -0.7288), p < 0.0001 vs. -0.7855; 95% CI, -0.8877 to -0.6096, p < 0.0001 and -0.581; 95% CI, -0.7679 to -0.3028, p = 0.0002, respectively), indicating the capacity to neutralize the virus is most superior by infection alone. CONCLUSIONS: Vaccines induce anti-RBD titers as high as the natural infection with lower neutralization capacity, and it does not boost immunity in pre-infected persons.

3.
Insects ; 14(6)2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37367359

ABSTRACT

Anopheles stephensi is an Asian and Middle Eastern malaria vector, and it has recently spread to the African continent. It is needed to measure how the malaria parasite infection in A. stephensi is influenced by environmental factors to predict its expansion in a new environment. Effects of temperature and food conditions during larval periods on larval mortality, larval period, female wing size, egg production, egg size, adult longevity, and malaria infection rate were studied using a laboratory strain. Larval survival and female wing size were generally reduced when reared at higher temperatures and with a low food supply during the larval period. Egg production was not significantly affected by temperature during the larval period. Egg size was generally smaller in females reared at higher temperatures during the larval period. The infection rate of mosquitoes that fed on blood from malaria-infected mice was not affected by rearing temperature or food conditions during the larval period. Higher temperatures may reduce infection. A. stephensi; however, larger individuals can still be infective. We suggest that routinely recording the body size of adults in field surveys is effective in finding productive larval breeding sites and in predicting malaria risk.

4.
Case Rep Gastroenterol ; 17(1): 197-203, 2023.
Article in English | MEDLINE | ID: mdl-37091833

ABSTRACT

Gastric cancer is one of the most common diseases globally. Total gastrectomy is often performed surgically. However, late-stage anastomotic passage obstruction after total gastrectomy is relatively rare. Here, we report a case involving a 73-year-old male patient who experienced repeated aspiration pneumonia due to anastomotic passage obstruction 22 years after a total gastrectomy for gastric cancer. He was eventually hospitalized in the Department of Gastroenterology at our hospital because of difficulty eating. Computed tomography revealed prominent dilation of the esophagus and the blind end of the elevated jejunum. Upper gastrointestinal endoscopy revealed a poorly extended site on the main side of the elevated jejunum; however, the passage through the scope was good. A percutaneous trans-esophageal gastrostomy was performed for oral intake. The patient experienced decreased nausea and vomiting. He gained weight, and his general condition improved. He did not feel inconvenienced by percutaneous trans-esophageal gastrostomy and had no desire for surgery. Follow-up observations are currently being conducted, with tubes exchanged every 6 months. There are no reports of percutaneous trans-esophageal gastrostomy for oral intake for anastomotic passage obstruction following total gastrectomy; therefore, we report this as a reference when similar cases are encountered.

5.
Article in English | MEDLINE | ID: mdl-36792224

ABSTRACT

BACKGROUND: Previous cardiovascular risk prediction models in Japan have utilized prospective cohort studies with concise data. As the health information including health check-up records and administrative claims becomes digitalized and publicly available, application of large datasets based on such real-world data can achieve prediction accuracy and support social implementation of cardiovascular disease risk prediction models in preventive and clinical practice. In this study, classical regression and machine learning methods were explored to develop ischemic heart disease (IHD) and stroke prognostic models using real-world data. METHODS: IQVIA Japan Claims Database was searched to include 691,160 individuals (predominantly corporate employees and their families working in secondary and tertiary industries) with at least one annual health check-up record during the identification period (April 2013-December 2018). The primary outcome of the study was the first recorded IHD or stroke event. Predictors were annual health check-up records at the index year-month, comprising demographic characteristics, laboratory tests, and questionnaire features. Four prediction models (Cox, Elnet-Cox, XGBoost, and Ensemble) were assessed in the present study to develop a cardiovascular disease risk prediction model for Japan. RESULTS: The analysis cohort consisted of 572,971 invididuals. All prediction models showed similarly good performance. The Harrell's C-index was close to 0.9 for all IHD models, and above 0.7 for stroke models. In IHD models, age, sex, high-density lipoprotein, low-density lipoprotein, cholesterol, and systolic blood pressure had higher importance, while in stroke models systolic blood pressure and age had higher importance. CONCLUSION: Our study analyzed classical regression and machine learning algorithms to develop cardiovascular disease risk prediction models for IHD and stroke in Japan that can be applied to practical use in a large population with predictive accuracy.


Subject(s)
Cardiovascular Diseases , Myocardial Ischemia , Stroke , Humans , Cardiovascular Diseases/epidemiology , Prognosis , Prospective Studies , Japan/epidemiology , Stroke/diagnosis , Stroke/epidemiology , Stroke/etiology , Myocardial Ischemia/epidemiology , Risk Assessment/methods
6.
Parasitol Int ; 92: 102652, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36007703

ABSTRACT

We previously demonstrated that boosting with adeno-associated virus (AAV) type 1 (AAV1) can induce highly effective and long-lasting protective immune responses against malaria parasites when combined with replication-deficient adenovirus priming in a rodent model. In the present study, we compared the efficacy of two different AAV serotypes, AAV1 and AAV5, as malaria booster vaccines following priming with the attenuated replication-competent vaccinia virus strain LC16m8Δ (m8Δ), which harbors the fusion gene encoding both the pre-erythrocytic stage protein, Plasmodium falciparum circumsporozoite (PfCSP) and the sexual stage protein (Pfs25) in a two-dose heterologous prime-boost immunization regimen. Both regimens, m8Δ/AAV1 and m8Δ/AAV5, induced robust anti-PfCSP and anti-Pfs25 antibodies. To evaluate the protective efficacy, the mice were challenged with sporozoites twice after immunization. At the first sporozoite challenge, m8Δ/AAV5 achieved 100% sterile protection whereas m8Δ/AAV1 achieved 70% protection. However, at the second challenge, 100% of the surviving mice from the first challenge were protected in the m8Δ/AAV1 group whereas only 55.6% of those in the m8Δ/AAV5 group were protected. Regarding the transmission-blocking efficacy, we found that both immunization regimens induced high levels of transmission-reducing activity (>99%) and transmission-blocking activity (>95%). Our data indicate that the AAV5-based multistage malaria vaccine is as effective as the AAV1-based vaccine when administered following an m8Δ-based vaccine. These results suggest that AAV5 could be a viable alternate vaccine vector as a malaria booster vaccine.


Subject(s)
Malaria Vaccines , Malaria , Animals , Mice , Vaccinia virus/genetics , Dependovirus/genetics , Sporozoites
7.
Front Immunol ; 13: 1005476, 2022.
Article in English | MEDLINE | ID: mdl-36248835

ABSTRACT

The Malaria Vaccine Technology Roadmap 2013 (World Health Organization) aims to develop safe and effective vaccines by 2030 that will offer at least 75% protective efficacy against clinical malaria and reduce parasite transmission. Here, we demonstrate a highly effective multistage vaccine against both the pre-erythrocytic and sexual stages of Plasmodium falciparum that protects and reduces transmission in a murine model. The vaccine is based on a viral-vectored vaccine platform, comprising a highly-attenuated vaccinia virus strain, LC16m8Δ (m8Δ), a genetically stable variant of a licensed and highly effective Japanese smallpox vaccine LC16m8, and an adeno-associated virus (AAV), a viral vector for human gene therapy. The genes encoding P. falciparum circumsporozoite protein (PfCSP) and the ookinete protein P25 (Pfs25) are expressed as a Pfs25-PfCSP fusion protein, and the heterologous m8Δ-prime/AAV-boost immunization regimen in mice provided both 100% protection against PfCSP-transgenic P. berghei sporozoites and up to 100% transmission blocking efficacy, as determined by a direct membrane feeding assay using parasites from P. falciparum-positive, naturally-infected donors from endemic settings. Remarkably, the persistence of vaccine-induced immune responses were over 7 months and additionally provided complete protection against repeated parasite challenge in a murine model. We propose that application of the m8Δ/AAV malaria multistage vaccine platform has the potential to contribute to the landmark goals of the malaria vaccine technology roadmap, to achieve life-long sterile protection and high-level transmission blocking efficacy.


Subject(s)
Antimalarials , Malaria Vaccines , Malaria, Falciparum , Animals , Antibodies, Protozoan , Dependovirus/genetics , Disease Models, Animal , Humans , Mice , Protozoan Proteins/genetics
8.
Emerg Microbes Infect ; 11(1): 2359-2370, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36069348

ABSTRACT

Viral vectors are a potent vaccine platform for inducing humoral and T-cell immune responses. Among the various viral vectors, replication-competent ones are less commonly used for coronavirus disease 2019 (COVID-19) vaccine development compared with replication-deficient ones. Here, we show the availability of a smallpox vaccine LC16m8Δ (m8Δ) as a replication-competent viral vector for a COVID-19 vaccine. M8Δ is a genetically stable variant of the licensed and highly effective Japanese smallpox vaccine LC16m8. Here, we generated two m8Δ recombinants: one harbouring a gene cassette encoding the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) glycoprotein, named m8Δ-SARS2(P7.5-S)-HA; and one encoding the S protein with a highly polybasic motif at the S1/S2 cleavage site, named m8Δ-SARS2(P7.5-SHN)-HA. M8Δ-SARS2(P7.5-S)-HA induced S-specific antibodies in mice that persisted for at least six weeks after a homologous boost immunization. All eight analysed serum samples displayed neutralizing activity against an S-pseudotyped virus at a level similar to that of serum samples from patients with COVID-19, and more than half (5/8) also had neutralizing activity against the Delta/B.1.617.2 variant of concern. Importantly, most serum samples also neutralized the infectious SARS-CoV-2 Wuhan and Delta/B.1.617.2 strains. In contrast, immunization with m8Δ-SARS2(P7.5-SHN)-HA elicited significantly lower antibody titres, and the induced antibodies had less neutralizing activity. Regarding T-cell immunity, both m8Δ recombinants elicited S-specific multifunctional CD8+ and CD4+ T-cell responses even after just a primary immunization. Thus, m8Δ provides an alternative method for developing a novel COVID-19 vaccine.


Subject(s)
COVID-19 , Smallpox Vaccine , Viral Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Mice , SARS-CoV-2/genetics , Smallpox Vaccine/genetics , Spike Glycoprotein, Coronavirus/genetics
9.
J Gastroenterol Hepatol ; 37(1): 104-110, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34478167

ABSTRACT

BACKGROUND AND AIM: Diagnostic support using artificial intelligence may contribute to the equalization of endoscopic diagnosis of colorectal lesions. We developed computer-aided diagnosis (CADx) support system for diagnosing colorectal lesions using the NBI International Colorectal Endoscopic (NICE) classification and the Japan NBI Expert Team (JNET) classification. METHODS: Using Residual Network as the classifier and NBI images as training images, we developed a CADx based on the NICE classification (CADx-N) and a CADx based on the JNET classification (CADx-J). For validation, 480 non-magnifying and magnifying NBI images were used for the CADx-N and 320 magnifying NBI images were used for the CADx-J. The diagnostic performance of the CADx-N was evaluated using the magnification rate. RESULTS: The accuracy of the CADx-N for Types 1, 2, and 3 was 97.5%, 91.2%, and 93.8%, respectively. The diagnostic performance for each magnification level was good (no statistically significant difference). The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of the CADx-J were 100%, 96.3%, 82.8%, 100%, and 96.9% for Type 1; 80.3%, 93.7%, 94.1%, 79.2%, and 86.3% for Type 2A; 80.4%, 84.7%, 46.8%, 96.3%, and 84.1% for Type 2B; and 62.5%, 99.6%, 96.8%, 93.8%, and 94.1% for Type 3, respectively. CONCLUSIONS: The multi-class CADx systems had good diagnostic performance with both the NICE and JNET classifications and may aid in educating non-expert endoscopists and assist in diagnosing colorectal lesions.


Subject(s)
Colonoscopes , Colorectal Neoplasms , Diagnosis, Computer-Assisted , Artificial Intelligence , Colorectal Neoplasms/diagnostic imaging , Humans , Sensitivity and Specificity
10.
Front Immunol ; 12: 612910, 2021.
Article in English | MEDLINE | ID: mdl-34248928

ABSTRACT

Hepatocyte infection by malaria sporozoites is a bottleneck in the life-cycle of Plasmodium spp. including P. falciparum, which causes the most lethal form of malaria. Therefore, developing an effective vaccine capable of inducing the strong humoral and cellular immune responses necessary to block the pre-erythrocytic stage has potential to overcome the spatiotemporal hindrances pertaining to parasite biology and hepatic microanatomy. We recently showed that when combined with a human adenovirus type 5 (AdHu5)-priming vaccine, adeno-associated virus serotype 1 (AAV1) is a potent booster malaria vaccine vector capable of inducing strong and long-lasting protective immune responses in a rodent malaria model. Here, we evaluated the protective efficacy of a hepatotropic virus, adeno-associated virus serotype 8 (AAV8), as a booster vector because it can deliver a transgene potently and rapidly to the liver, the organ malaria sporozoites initially infect and multiply in following sporozoite injection by the bite of an infected mosquito. We first generated an AAV8-vectored vaccine expressing P. falciparum circumsporozoite protein (PfCSP). Intravenous (i.v.) administration of AAV8-PfCSP to mice initially primed with AdHu5-PfCSP resulted in a hepatocyte transduction rate ~2.5 times above that seen with intramuscular (i.m.) administration. This immunization regimen provided a better protection rate (100% sterile protection) than that of the i.m. AdHu5-prime/i.m. AAV8-boost regimen (60%, p < 0.05), i.m. AdHu5-prime/i.v. AAV1-boost (78%), or i.m. AdHu5-prime/i.m. AAV1-boost (80%) against challenge with transgenic PfCSP-expressing P. berghei sporozoites. Compared with the i.m. AdHu5-prime/i.v. AAV1-boost regimen, three other regimens induced higher levels of PfCSP-specific humoral immune responses. Importantly, a single i.v. dose of AAV8-PfCSP recruited CD8+ T cells, especially resident memory CD8+ T cells, in the liver. These data suggest that boost with i.v. AAV8-PfCSP can improve humoral and cellular immune responses in BALB/c mice. Therefore, this regimen holds great promise as a next-generation platform for the development of an effective malaria vaccine.


Subject(s)
Dependovirus/immunology , Immunization, Secondary/methods , Liver/immunology , Malaria Vaccines/immunology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/immunology , Adenovirus Vaccines/immunology , Animals , Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Line , Dependovirus/genetics , Disease Models, Animal , Female , HEK293 Cells , Humans , Immunologic Memory , Liver/cytology , Liver/drug effects , Malaria Vaccines/administration & dosage , Malaria, Falciparum/immunology , Mice , Mice, Inbred BALB C , Protozoan Proteins/immunology , Vaccines, DNA/immunology
12.
Gene Expr ; 20(3): 147-155, 2021 06 11.
Article in English | MEDLINE | ID: mdl-33115550

ABSTRACT

Intramuscular administration of wild-type baculovirus is able to both protect against Plasmodium sporozoite challenge and eliminate liver-stage parasites via a Toll-like receptor 9-independent pathway. To investigate its effector mechanism(s), the gene expression profile in the liver of baculovirus-administered mice was characterized by cDNA microarray analysis. The ingenuity pathway analysis gene ontology module revealed that the major gene subsets induced by baculovirus were immune-related signaling, such as interferon signaling. A total of 40 genes commonly upregulated in a Toll-like receptor 9-independent manner were included as possible candidates for parasite elimination. This gene subset consisted of NT5C3, LOC105246895, BTC, APOL9a/b, G3BP3, SLC6A6, USP25, TRIM14, and PSMB8 as the top 10 candidates according to the special unit. These findings provide new insight into effector molecules responsible for liver-stage parasite killing and, possibly, the development of a new baculovirus-mediated prophylactic and therapeutic biopharmaceutical for malaria.


Subject(s)
Baculoviridae/pathogenicity , Immunity, Innate/genetics , Liver/metabolism , Malaria/prevention & control , Transcriptome , Animals , Baculoviridae/immunology , Female , Injections, Intramuscular/methods , Interferons/genetics , Interferons/metabolism , Liver/parasitology , Liver/virology , Malaria/immunology , Malaria/virology , Mice , Mice, Inbred BALB C , Signal Transduction , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism , Up-Regulation , Vaccination/methods
13.
J Cardiol ; 76(4): 342-349, 2020 10.
Article in English | MEDLINE | ID: mdl-32636125

ABSTRACT

BACKGROUND: Our objective was to characterize cases of hospitalized heart failure (HHF) focusing on in-hospital resource utilization (particularly furosemide doses) and worsening heart failure (WHF), and identify which factors are associated with the length of stay (LOS). METHODS: Cases of HHF (≥20 years), excluding those undergoing surgical procedures and in-hospital deaths, were retrieved from the Japanese Diagnosis Procedure Combination database (April 2012 to March 2016). WHF was defined using eight components, including up-titration of intravenous drugs and non-pharmacological management. RESULTS: The mean age of 78,953 cases of HHF was 79 years and 51% were male. The median LOS was 17 days. The maximum daily dose and cumulative dose of furosemide (mean ± standard deviation) were 43.3 ± 56.0 mg and 215.6 ± 450.6 mg, respectively, for intravenous furosemide, and 44.0 ± 37.3 mg and 523.3 ± 675.4 mg, respectively, for oral furosemide. The incidence of WHF was 36.1% during hospitalization and 19.3% from 6th hospital day to discharge. The mean number of WHF components was 1.4 ± 0.7 during hospitalization and 1.3 ± 0.6 from 6th hospital day. Regression analyses showed that the number of WHF components from 6th hospital day, pneumonia, and hyponatremia were strongly associated with longer LOS. CONCLUSIONS: These findings in patients with HHF could be vital to focus future efforts to improve the therapeutic strategies for heart failure.


Subject(s)
Heart Failure , Aged , Aged, 80 and over , Cohort Studies , Databases, Factual , Disease Progression , Female , Furosemide/therapeutic use , Heart Failure/drug therapy , Hospitalization , Humans , Hyponatremia , Japan , Male , Pneumonia , Sodium Potassium Chloride Symporter Inhibitors/therapeutic use
14.
Front Immunol ; 10: 2412, 2019.
Article in English | MEDLINE | ID: mdl-31681301

ABSTRACT

Malaria parasites undergo several stages in their complex lifecycle. To achieve reductions in both the individual disease burden and malaria transmission within communities, a multi-stage malaria vaccine with high effectiveness and durability is a more efficacious strategy compared with a single-stage vaccine. Here, we generated viral-vectored vaccines based on human adenovirus type 5 (AdHu5) and adeno-associated virus serotype 1 (AAV1) expressing a fusion protein of the pre-erythrocytic stage Plasmodium falciparum circumsporozoite protein (PfCSP) and the transmission-blocking sexual stage P25 protein (Pfs25). A two-dose heterologous AdHu5-prime/AAV1-boost immunization regimen proved to be highly effective for both full protection and transmission-blocking activity against transgenic P. berghei parasites expressing the corresponding P. falciparum antigens in mice. Remarkably, the immunization regimen induced antibody responses to both PfCSP and Pfs25 for over 9 months after the boosting and also maintained high levels of transmission-reducing activity (TRA: >99%) during that period, as evaluated by a direct feeding assay. If similar efficacies on P. falciparum can be shown following vaccination of humans, we propose that this multi-stage malaria vaccine regimen will be a powerful tool for malaria control, providing greater overall protection and cost-effectiveness than single-stage vaccines.


Subject(s)
Genetic Engineering , Genetic Vectors/genetics , Malaria Vaccines/genetics , Malaria Vaccines/immunology , Malaria/immunology , Malaria/prevention & control , Viruses/genetics , Adenoviruses, Human/genetics , Animals , Antibodies, Protozoan/immunology , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Chromobox Protein Homolog 5 , Dependovirus/genetics , Disease Models, Animal , Gene Expression , Gene Order , Humans , Malaria/mortality , Malaria/transmission , Malaria Vaccines/administration & dosage , Mice , Plasmodium berghei/genetics , Plasmodium berghei/immunology , Protozoan Proteins/genetics , Protozoan Proteins/immunology
15.
Front Immunol ; 10: 730, 2019.
Article in English | MEDLINE | ID: mdl-31024558

ABSTRACT

An ideal malaria vaccine platform should potently induce protective immune responses and block parasite transmission from mosquito to human, and it should maintain these effects for an extended period. Here, we have focused on vaccine development based on adeno-associated virus serotype 1 (AAV1), a viral vector widely studied in the field of clinical gene therapy that is able to induce long-term transgene expression without causing toxicity in vivo. Our results show the potential utility of AAV1 vectors as an extremely potent booster vaccine to induce durable immunity when combined with an adenovirus-priming vaccine in a rodent malaria model. We generated a series of recombinant AAV1s and human adenovirus type 5 (AdHu5) expressing either Plasmodium falciparum circumsporozoite protein (PfCSP) or P25 (Pfs25) protein. Heterologous two-dose immunization with an AdHu5-prime and AAV1-boost (AdHu5-AAV1) elicited robust and durable PfCSP- or Pfs25-specific functional antibodies over 280 days. Regarding protective efficacy, AdHu5-AAV1 PfCSP achieved high sterile protection (up to 80% protection rate) against challenge with transgenic Plasmodium berghei sporozoites expressing PfCSP. When examining transmission-blocking (TB) efficacy, we found that immunization with AdHu5-AAV1 Pfs25 maintained TB activity in vivo against transgenic P. berghei expressing Pfs25 for 287 days (99% reduction in oocyst intensity, 85% reduction in oocyst prevalence). Our data indicate that AAV1-based malaria vaccines can confer potent and durable protection as well as TB efficacy when administered following an AdHu5 priming vaccine, supporting the further evaluation of this regimen in clinical trials as a next-generation malaria vaccine platform.


Subject(s)
Dependovirus/genetics , Genetic Vectors/genetics , Malaria Vaccines/immunology , Malaria/immunology , Plasmodium falciparum/physiology , Animals , Antibodies, Protozoan/blood , Cells, Cultured , Disease Resistance , Genetic Therapy , Humans , Immunity, Heterologous , Immunization, Secondary , Malaria/transmission , Mice , Mice, Inbred BALB C , Protozoan Proteins/genetics , Vaccination
16.
World J Gastroenterol ; 25(10): 1197-1209, 2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30886503

ABSTRACT

BACKGROUND: It was shown in previous studies that high definition endoscopy, high magnification endoscopy and image enhancement technologies, such as chromoendoscopy and digital chromoendoscopy [narrow-band imaging (NBI), i-Scan] facilitate the detection and classification of colonic polyps during endoscopic sessions. However, there are no comprehensive studies so far that analyze which endoscopic imaging modalities facilitate the automated classification of colonic polyps. In this work, we investigate the impact of endoscopic imaging modalities on the results of computer-assisted diagnosis systems for colonic polyp staging. AIM: To assess which endoscopic imaging modalities are best suited for the computer-assisted staging of colonic polyps. METHODS: In our experiments, we apply twelve state-of-the-art feature extraction methods for the classification of colonic polyps to five endoscopic image databases of colonic lesions. For this purpose, we employ a specifically designed experimental setup to avoid biases in the outcomes caused by differing numbers of images per image database. The image databases were obtained using different imaging modalities. Two databases were obtained by high-definition endoscopy in combination with i-Scan technology (one with chromoendoscopy and one without chromoendoscopy). Three databases were obtained by high-magnification endoscopy (two databases using narrow band imaging and one using chromoendoscopy). The lesions are categorized into non-neoplastic and neoplastic according to the histological diagnosis. RESULTS: Generally, it is feature-dependent which imaging modalities achieve high results and which do not. For the high-definition image databases, we achieved overall classification rates of up to 79.2% with chromoendoscopy and 88.9% without chromoendoscopy. In the case of the database obtained by high-magnification chromoendoscopy, the classification rates were up to 81.4%. For the combination of high-magnification endoscopy with NBI, results of up to 97.4% for one database and up to 84% for the other were achieved. Non-neoplastic lesions were classified more accurately in general than non-neoplastic lesions. It was shown that the image recording conditions highly affect the performance of automated diagnosis systems and partly contribute to a stronger effect on the staging results than the used imaging modality. CONCLUSION: Chromoendoscopy has a negative impact on the results of the methods. NBI is better suited than chromoendoscopy. High-definition and high-magnification endoscopy are equally suited.


Subject(s)
Colonic Polyps/diagnostic imaging , Colonoscopy/methods , Colorectal Neoplasms/prevention & control , Diagnosis, Computer-Assisted/methods , Precancerous Conditions/diagnostic imaging , Colonic Polyps/pathology , Coloring Agents/administration & dosage , Humans , Image Enhancement/methods , Narrow Band Imaging/methods , Precancerous Conditions/pathology , Video Recording/methods
17.
Parasite Immunol ; 41(5): e12624, 2019 05.
Article in English | MEDLINE | ID: mdl-30883819

ABSTRACT

Plasmodium falciparum circumsporozoite protein (PfCSP) is the main target antigen in development of pre-erythrocytic malaria vaccines. To evaluate PfCSP vaccines in animal models, challenge by intravenous sporozoite injection is preferentially used. However, in clinical trials, vaccinated human volunteers are exposed to the bites of malaria-infected mosquitoes. In this study, we down-selected Escherichia coli-produced full-length PfCSP (PfCSP-F) and its three truncated PfCSPs based on their abilities to elicit immune response and protection in mice against two challenge models. We showed that immunization with three doses of PfCSP-F elicited high anti-PfCSP antibody titres and 100% protection against the bites of infected mosquitoes. Meanwhile, three-dose truncated PfCSP induced 60%-70% protection after immunization with each truncated PfCSP. Heterologous prime-boost immunization regimen with adenovirus-PfCSP-F and R32LR greatly induced complete protection against intravenous sporozoite injection. Our results suggest that Abs to both anti-repeat and anti-nonrepeat regions induced by PfCSP-F are required to confer complete protection against challenge by the bites of infected mosquitoes, whereas anti-repeat Abs play an important role in protection against intravenous sporozoite injection. Our findings provide a potential clinical application that PfCSP-F vaccine induces potent Abs capable of neutralizing sporozoites in the dermis inoculated by infected mosquitoes and subsequently sporozoites in the blood circulation.


Subject(s)
Immunization , Malaria Vaccines/immunology , Malaria/prevention & control , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Sporozoites/immunology , Animals , Antibodies, Protozoan/blood , Humans , Malaria/parasitology , Mice
18.
Sci Rep ; 9(1): 3129, 2019 02 28.
Article in English | MEDLINE | ID: mdl-30816309

ABSTRACT

The saliva of hematophagous arthropods is enriched with a complex mixture of antihemostatic molecules, the biological functions of which are largely unknown. Anopheline antiplatelet protein (AAPP) from malaria vector mosquito exhibits strong antiplatelet activity when bound directly to host collagen by its C-terminus and through its N-terminus with Ca2+-binding activity. To investigate the biological functions of AAPP in blood feeding behavior and malaria transmission, we generated transgenic Anopheles stephensi mosquito lines expressing anti-AAPP antibody single-chain fragment (scFv) in their salivary glands. The AAPP-specific collagen-binding activity was completely abolished by AAPP-scFv complex formation in the saliva. Probing and prediuresis time, feeding success, blood meal size, and fecundity, which are all fitness characteristics, were significantly reduced in the transgenic mosquitoes. However, oocysts number in these mosquitoes were not significantly reduced following blood meal intake from Plasmodium berghei-infected mice. These results show that although AAPP plays an important role in mosquito blood feeding, its neutralizing activity did not affect sporogonic development in our laboratory model, but its high fitness cost would pose a survival risk for parasite-infected mosquitoes in nature.


Subject(s)
Anopheles/physiology , Insect Proteins/metabolism , Malaria/transmission , Saliva/metabolism , Animals , Animals, Genetically Modified/genetics , Animals, Genetically Modified/physiology , Anopheles/genetics , Feeding Behavior , Female , Fertility , Insect Proteins/genetics , Insect Vectors/genetics , Insect Vectors/physiology , Mice , Mice, Inbred BALB C , Mice, Inbred ICR , Plasmodium berghei/physiology
19.
J Immunol ; 201(8): 2441-2451, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30209187

ABSTRACT

Baculovirus (BV), an enveloped insect virus with a circular dsDNA genome, possesses unique characteristics that induce strong innate immune responses in mammalian cells. In this study, we show that BV administration in BALB/c mice not only provides complete protection against a subsequent Plasmodium berghei sporozoite infection for up to 7 d after the injection but also eliminates existing liver-stage parasites completely. The elimination of sporozoites by BV was superior to that by primaquine, and this effect occurred in a TLR9-independent manner. At 6 h after BV administration, IFN-α and IFN-γ were robustly produced in the serum, and RNA transcripts of IFN-stimulated genes were markedly upregulated in the liver compared with control mice. The in vivo passive transfer of serum after BV administration effectively eliminated liver-stage parasites, and IFN-α neutralization abolished this effect, indicating that the BV liver-stage parasite-killing mechanism is downstream of the type I IFN signaling pathway. These findings provide evidence that BV-induced, fast-acting innate immunity completely kills liver-stage parasites and, thus, may lead to new malaria drug and vaccine strategies.


Subject(s)
Baculoviridae/physiology , Immunotherapy, Adoptive/methods , Liver/immunology , Malaria Vaccines/immunology , Malaria/immunology , Plasmodium berghei/immunology , Animals , Cells, Cultured , Cytotoxicity, Immunologic , Immunity, Innate , Interferon Type I/metabolism , Interferon-alpha/blood , Interferon-gamma/blood , Liver/parasitology , Malaria/drug therapy , Mice , Mice, Inbred BALB C , Primaquine/therapeutic use , Signal Transduction , Sporozoites
20.
Comput Biol Med ; 102: 251-259, 2018 11 01.
Article in English | MEDLINE | ID: mdl-29773226

ABSTRACT

BACKGROUND: In medical image data sets, the number of images is usually quite small. The small number of training samples does not allow to properly train classifiers which leads to massive overfitting to the training data. In this work, we investigate whether increasing the number of training samples by merging datasets from different imaging modalities can be effectively applied to improve predictive performance. Further, we investigate if the extracted features from the employed image representations differ between different imaging modalities and if domain adaption helps to overcome these differences. METHOD: We employ twelve feature extraction methods to differentiate between non-neoplastic and neoplastic lesions. Experiments are performed using four different classifier training strategies, each with a different combination of training data. The specifically designed setup for these experiments enables a fair comparison between the four training strategies. RESULTS: Combining high definition with high magnification training data and chromoscopic with non-chromoscopic training data partly improved the results. The usage of domain adaptation has only a small effect on the results compared to just using non-adapted training data. CONCLUSION: Merging datasets from different imaging modalities turned out to be partially beneficial for the case of combining high definition endoscopic data with high magnification endoscopic data and for combining chromoscopic with non-chromoscopic data. NBI and chromoendoscopy on the other hand are mostly too different with respect to the extracted features to combine images of these two modalities for classifier training.


Subject(s)
Colonic Polyps/diagnostic imaging , Diagnosis, Computer-Assisted/methods , Pattern Recognition, Automated , Algorithms , Colonoscopy , Colorectal Neoplasms/diagnostic imaging , Diagnostic Imaging/methods , Endoscopy , Humans , Image Enhancement/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...